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Abstract—In this paper, we investigate on conceiving reliable
fixed broadband wireless networks under outage probability
constraints. We introduce a joint model of data routing and
bandwidth assignment that minimizes the total renewal fees of
licenses. This problem differs from classical capacity planning
since the capacity of microwave links is prone to variations and,
hence, we must deal with random parameters to guarantee a
desirable reliability level of the solution. We introduce a chance-
constrained programming approach to tackle this problem and
derive integer linear programming (ILP) counterparts. We
further propose cutset-based valid inequalities to enhance the
performance of ILP solvers. Computational results illustrate
the price of reliability and present a comparative study on the
performance of the different formulations.

I. INTRODUCTION

Fixed broadband wireless communications is a particu-

lar sector of the communication industry that holds great

promise for delivering private high-speed data connections

by means of microwave radio transmission [1], [2]. Mi-

crowave, in the context of this work, refers to terrestrial

point-to-point digital radio communications, usually employ-

ing highly directional antennas in clear line-of-sight (LOS)

and operating in licensed frequency bands. This makes

microwave communications typically free from interference.

Despite recent advances in fixed broadband wireless com-

munications, a variety of questions remain unaddressed in

this area. Particularly, capacity planning in fixed wireless

networks is quite different from wired network planning.

In fact, the radio frequency spectrum is a limited natural

resource which has been regulated worldwide to promote

its efficient use. Moreover, environment conditions (e.g.,

weather) play an important role since they can introduce

instantaneous variations into the communication channel,

likely leading to outage events.

Although having limited bandwidth and suffering channel

impairments, fixed wireless networks must degrade smoothly

as environment conditions degrade. As a common practice,

operators highly overprovision bandwidth during network

planning to avoid traffic bottlenecks under adverse scenarios

(when the performance of some links deteriorates). This

approach, however, incurs additional investments that do

not result in resource- and cost-efficient networks, besides

leading to an inefficient use of the radio spectrum.

In this paper, we introduce a chance-constrained math-

ematical programming approach to conceive reliable fixed

broadband wireless networks under outage probability con-

straints. Chance-constrained programming is a specific

model of stochastic optimization for dealing with random

parameters in optimization problems [3], [4]. Actually, there

exist situations where constraint violation can hardly be

avoided because of unexpected extreme events. This ap-

proach thus aims at determining optimal decisions that have

to be taken prior to the observation of random parameters

and remain feasible for a given infeasibility tolerance.

Chance-constrained programming is still considered as

hard and widely intractable since the feasible region defined

by a probabilistic constraint is generally not convex. In

addition, among the vast literature on chance-constrained

programming, few research work has been carried out to

tackle combinatorial problems [5], [6]. Given these difficul-

ties, we derive an equivalent ILP formulation for the case

where the outage probabilities of the microwave links are

independent and propose cutset-based valid inequalities to

obtain strengthened formulations for this problem.

The remainder of the paper is organized as follows. In

Section II, we briefly discuss spectrum pricing in licensed

bands and convey information about the link characteriza-

tion. In Section III, we introduce exact formulations for the

application considered here. Section IV is devoted to cutset-

based valid inequalities. In Section V, we illustrate the price

of reliability and present a comparative study of the different

formulations. Final remarks and comments on future work

conclude the paper with Section VI.

II. PRELIMINARIES

A. Licensed frequency bands

The radio frequency spectrum is a limited natural resource

regulated worldwide by the International Telecommunica-

tions Union (ITU). In conjunction with ITU regulations,

national legislation instruments establish the availability of

frequency bands for specific applications and the procedures



Table I
BANDWIDTH EFFICIENCY, SNR REQUIREMENT, AND CAPACITY.

Modulation Bandwidth SNR Capacity Capacity
scheme efficiency requirem. for 7 MHz for 28 MHz
QPSK 2 bps/Hz 14.21 dB 14 Mbps 56 Mbps
16-QAM 4 bps/Hz 21.02 dB 28 Mbps 112 Mbps
32-QAM 5 bps/Hz 25.24 dB 35 Mbps 140 Mbps
64-QAM 6 bps/Hz 27.45 dB 42 Mbps 168 Mbps
128-QAM 7 bps/Hz 31.10 dB 49 Mbps 196 Mbps
256-QAM 8 bps/Hz 33.78 dB 56 Mbps 224 Mbps

for issuing licenses. A license (assignment) is the authoriza-

tion given by an administration for a radio station to use a

radio frequency under specified conditions, normally subject

to renewal upon payment of renewal fees.

Administrative methods of setting spectrum prices are

increasingly being supplemented by the use of market-based

methods. In some countries, the frequency spectrum is sold

to an operator, either by auction or by competitive tender.

In this case, once an operator is assigned the privilege to

use a part of the spectrum, the cost to the operator would

be the same regardless whether or not a link transmits on

certain bandwidth. However, in most cases (as assumed in

this paper), the price of a frequency spectrum for a single

microwave link is a function of the amount of spectrum

(bandwidth) in MHz with which a license is associated.

B. Link characterization

Commonly, to support broadband applications, mod-

ern microwave systems use quadrature amplitude modula-

tion (QAM). An m-QAM scheme presents m combinations

of amplitude and phase, each one representing an n-bit

pattern called a symbol (with n = log2 m and integer).

Given the channel bandwidth B and the m-QAM scheme

in use, we can approximate the channel capacity C by:

C[bps] = n ·B[Hz]

High-level QAM schemes, despite presenting better band-

width efficiency, are more susceptible to errors due to

channel impairments. As the modulation scheme changes

to accommodate higher data rates, the signal-to-noise ratio

(SNR) requirement increases to preserve the bit error rate

(BER) (see Table I [7]). Rigorously, we can also use different

error correction codes. In any case, we can rebuild this table

for different combinations of modulation and coding (and

other radio parameters) based on equipment specifications.

Since the transmitted signal suffers deep fades, microwave

links are susceptible to outage events. Fading phenomena

are described in statistical terms, and the probability of

fades of a particular magnitude can be evaluated through

analytical techniques [8], [9]. To overcome outage events,

modern microwave systems employ adaptive modulation

and coding which has been proven to considerably enhance

link performance [10]. To keep the BER performance, this

technique entails the variability of the link’s capacity.

Considering a finite set of efficient radio configurations

(for which no configuration that presents better bandwidth

efficiency for a lower SNR requirement exists), we can

associate a discrete probability distribution with these con-

figurations, obtained either from statistical studies (in case

of license renewal of a network in operation) or from

fading models and power budget calculations. We henceforth

assume that such a discrete probability distribution is known

for each microwave link and bandwidth.

III. MATHEMATICAL FORMULATIONS

In this section, we introduce chance-constrained math-

ematical formulations and their ILP counterparts to the

optimization problem of deciding the bandwidth assignment

and network flows that minimize the total bandwidth cost,

while handling all the traffic requirements simultaneously

with a given reliability level.

A. Separate chance constraints

The network’s topology is modeled as a digraph G =
(V,E), where each node v ∈ V denotes a radio base

station (RBS) and each arc uv ∈ E represents a microwave

link from u to v, with u, v ∈ V and u 6= v. Let δ+(v)
(δ−(v)) denote the set of outneighbors (inneighbors) of v.

Let Wuv be the number of bandwidth choices available for

arc uv ∈ E. Each bandwidth bwuv , for w = 1, . . . ,Wuv ,

is associated with its cost cwuv and a random variable ηwuv
that represents the bandwidth efficiency of the current radio

configuration. Let εuv > 0 be the infeasibility tolerance

(typically near zero) on link uv chosen by the network

engineer. The traffic requirements are defined by K oriented

pairs of nodes (sk, tk), with sk, tk ∈ V and sk 6= tk, and

expected demand dk of pair k = 1, . . . ,K.

We aim at determining the bandwidth assignment and

the traffic flows that minimize the total bandwidth cost.

Let ywuv be the binary decision variable indicating whether

the bandwidth bwuv , w = 1, . . . ,Wuv , is assigned or not for

arc uv ∈ E. The flow variables fk
uv denote the fraction of

dk, k = 1, . . . ,K, routed on arc uv ∈ E. The optimization

problem can be formulated as follows:

min
∑

uv∈E

Wuv
∑

w=1

cwuvy
w
uv (1)

s.t.
∑

u∈δ−(v)

fk
uv −

∑

u∈δ+(v)

fk
vu =











−1, if v = sk,

1, if v = tk,

0, otherwise

∀v ∈ V,

k = 1...K
(2)

P

(

K
∑

k=1

dkfk
uv ≤

Wuv
∑

w=1

ηwuvb
w
uvy

w
uv

)

≥ 1− εuv∀uv ∈ E (3)

Wuv
∑

w=1

ywuv = 1 ∀uv ∈ E (4)

fk
uv ∈ [0, 1], ywuv ∈ {0, 1} (5)



The objective function (1) represents the total bandwidth

cost that is to minimize. The flow conservation property is

expressed by (2), guaranteeing that the traffic requirements

are entirely fulfilled. Constraints (3) ensure that the available

capacity on each link (considering the bandwidth choice and

the random configuration) supports the total traffic to be

routed through it with (high) probability 1 − εuv . Finally,

the bandwidth selection is determined by (4).

Since we have a finite number of scenarios, this proba-

bilistic program can be equivalently written as a standard

ILP model. However, this model is highly intractable due to

the very large number of scenarios to be considered. Here,

we use the idea of basic scenarios [5] to obtain, in an effi-

cient way, the deterministic counterparts of constraints (3):

K
∑

k=1

dkfk
uv ≤

Wuv
∑

w=1

nw
uvb

w
uvy

w
uv ∀uv ∈ E (6)

where, for each link and bandwidth, the constant nw
uv rep-

resents the maximum bandwidth efficiency we can assume

taking into account the infeasibility tolerance εuv . It can be

easily computed from the most bandwidth-efficient config-

uration for which the probability that the link is operated at

this configuration or higher is at least 1− εuv .

Since we impose separate probabilistic constraints (3) on

each link, even if we consider a very small infeasibility

tolerance on each constraint, the optimal solution can be

infeasible with a significant probability when the number

of links increases. Therefore, this approach is worthwhile

for particular cases where the network is not too large and

the links are engineered to have a very high availability. In

the sequel, we present a joint chance-constrained program

to overcome this limitation.

B. Joint chance constraints

We now enforce an infeasibility tolerance on the entire

block of capacity constraints, guaranteeing that the assigned

bandwidth supports the total traffic to be routed through the

network with (high) probability 1− ε. Thus, constraints (3)

are now replaced by a single chance constraint:

P

(

K
∑

k=1

dkfk
uv ≤

Wuv
∑

w=1

ηwuvb
w
uvy

w
uv ∀uv ∈ E

)

≥ 1− ε (7)

In case of independent probabilities, we can reformulate

the left hand side of (7) as the product of probabilities. For

this, we introduce the following modifications to the previ-

ous formulation: Let Mw
uv be the number of configurations

held by arc uv with respect to the bandwidth choice w.

Let ρwm
uv be the probability that the link is operated at

configuration m or higher. Now bwm
uv represents the capacity

on arc uv for a given bandwidth choice w and a specific

configuration m. In addition, the binary decision variables y

obtain a new index m that incorporates the assumption on

the radio configuration. The problem can be rewritten as:

min
∑

uv∈E

Wuv
∑

w=1

Mw
uv
∑

m=1

cwuvy
wm
uv (8)

s.t.
∑

u∈δ−(v)

fk
uv −

∑

u∈δ+(v)

fk
vu =











−1, if v = sk,

1, if v = tk,

0, otherwise

∀v ∈ V,

k = 1..K
(9)

K
∑

k=1

dkfk
uv ≤

Wuv
∑

w=1

Mw
uv
∑

m=1

bwm
uv ywm

uv ∀uv ∈ E (10)

∏

uv∈E

(

Wuv
∑

w=1

Mw
uv
∑

m=1

ρwm
uv ywm

uv ) ≥ 1− ε (11)

Wuv
∑

w=1

Mw
uv
∑

m=1

ywm
uv = 1 ∀uv ∈ E (12)

fk
uv ∈ [0, 1], ywm

uv ∈ {0, 1} (13)

Note that now, in the capacity constraints (10), we assume

explicitly a hypothesis on the radio configuration. Obvi-

ously, more conservative hypotheses lead to more reliable

solutions. Constraint (11) denotes formally this relation.

According to the bandwidth assignment and the hypotheses

on the radio configuration, it guarantees that the confidence

of the solutions is at least 1−ε. Constraint (11) is not linear,

but it can be easily linearized: By employing monotonicity of

logarithmic functions and because the logarithm of a product

is equal to the sum of the logarithms, (11) is equivalent to

∑

uv∈E

log





Wuv
∑

w=1

Mw
uv
∑

m=1

ρwm
uv ywm

uv



 ≥ log(1− ε) (14)

By (12), exactly one of the sum elements within the logarith-

mic function will be nonzero. Hence, (14) is equivalent to

∑

uv∈E

Wuv
∑

w=1

Mw
uv
∑

m=1

log(ρwm
uv )ywm

uv ≥ log(1− ε) (15)

IV. VALID INEQUALITIES

Constraints (9), (10), (12) define a classical network

design problem studied intensively in the literature (see

[11] and the references therein). Several valid inequalities

have been introduced to this problem, in particular, so-

called cut-based inequalities. Let S ⊂ V be a proper and

nonempty subset of V and S = V \ S its complement.

The set (S, S) := {uv ∈ E : u ∈ S, v ∈ S} is a

cutset. Let K(S,S) := {k ∈ K : sk ∈ S, tk ∈ S}

and d(S,S) :=
∑

k∈K(S,S)
dk. An appropriate aggregation

of constraints (9), (10), and nonnegativity of the variables

results in the following base cutset inequality:

∑

uv∈(S,S)

Wuv
∑

w=1

Mw
uv
∑

m=1

bwm
uv ywm

uv ≥ d(S,S) (16)



In the sequel, we introduce strong inequalities obtained by

Chvátal-Gomory (CG) rounding of cutset inequalities.

Type 1: Given a cutset (S, S), let

auv := minw=1,...,Wuv
minm=1,...,Mw

uv
bwm
uv

for uv ∈ (S, S). By (12) and a(S,S) :=
∑

uv∈(S,S) auv , (16)

can be equivalently formulated as

∑

uv∈(S,S)

Wuv
∑

w=1

Mw
uv
∑

m=1

(bwm
uv − auv)y

wm
uv ≥ d(S,S) − a(S,S) (17)

Now, let a be the maximal coefficient (bwm
uv −auv) at the

left hand side of inequality (17). By CG rounding, we obtain

the valid inequality Type 1 as follows:

∑

uv∈(S,S)

Wuv
∑

w=1

Mw
uv
∑

m=1

1wm
uv ywm

uv ≥

⌈

d(S,S) − a(S,S)

a

⌉

(18)

where 1wm
uv = 1 if bwm

uv > auv , and 0 otherwise.

In general, the LP relaxation of (8)–(10), (12)–(13), (15)

does not satisfy (18) although all integer solutions have to

satisfy it. Hence, the inequality is valid and can enhance the

solving of the ILP. Under certain conditions, (18) defines a

facet of the convex hull of feasible solutions (cf. [11]).

Type 2: Given a cutset (S, S), let a′uv be the second

smallest capacity coefficient bwm
uv of inequality (16) for

uv ∈ (S, S), and a′ := maxuv∈(S,S)a
′

uv . We can apply CG

rounding directly to (16):

∑

uv∈(S,S)

Wuv
∑

w=1

Mw
uv
∑

m=1

⌈

bwm
uv

a′

⌉

ywm
uv ≥

⌈

d(S,S)

a′

⌉

(19)

Moreover, from the sum of constraints (12) associated with

the cutset (S, S), we have

∑

uv∈(S,S)

Wuv
∑

w=1

Mw
uv
∑

m=1

ywm
uv = |(S, S)|, (20)

and subtracting (20) from (19), we obtain the valid inequality

Type 2 as follows:

∑

uv∈(S,S)

Wuv
∑

w=1

Mw
uv
∑

m=1

(⌈

bwm
uv

a′

⌉

−1

)

ywm
uv ≥

⌈

d(S,S)

a′

⌉

−|(S, S)| (21)

At least two coefficients
(⌈

bwm
uv

a′

⌉

− 1
)

for every arc uv ∈

(S, S) are equal to 0, and the cutset inequality is indeed

different from (18). Again, it can be shown that (21) defines

a facet of the convex hull of feasible solutions under certain

conditions (beyond the scope of this paper).
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Figure 1. 5× 5 grid instance

V. COMPUTATIONAL RESULTS

We have performed preliminary computational

experiments on a 5 × 5 grid instance (with 25 RBSs,

80 directional links, and 50 demands) (available at

http://www.di.unipi.it/optimize/Data/MMCF.html) which

originates from [12]. We consider two bandwidth choices for

every link: 7 MHz (28 MHz) with costs of $1,000 ($6,000).

We assume that links operating at 7 MHz (28 MHz) are

designed to use 128-QAM (256-QAM), with availability

of 99.9%. In fading conditions, these links will use 16-

QAM (32-QAM). We do not consider error correction

codes, therefore bandwidth efficiencies are as presented

in Table I. We employ the ILP counterpart of the joint

chance-constrained formulation since, in general, it is more

appropriate to cope with practical instances of this problem.

Computations were carried out on a Linux machine with

3.20 GHz Intel Xeon W5580 CPU (8 Threads) and 64 GB

RAM, using IBM ILOG CPLEX 12.1 as underlying solver.

Price of reliability: Since we assume the same avail-

ability for every link (independent of the bandwidth choice)

and under the hypothesis that the modulation schemes em-

ployed in fading conditions can guarantee an availability

of 100%, instead of explicitly setting the infeasibility tol-

erance ε, we can specify the maximum number of links N

that we suppose to use the highest modulation scheme. To

prove that, let us rewrite (15) considering these assumptions

(ρw1
uv = 1, availability for lowest modulation schemes, and

ρw2
uv = ρ, availability for highest modulation schemes):

∑

uv∈E

Wuv
∑

w=1

(log(1)yw1
uv + log(ρ)yw2

uv ) ≥ log(1− ε) (22)

Thus, in this scenario, (15) can be replaced by:

∑

uv∈E

Wuv
∑

w=1

yw2
uv ≤

⌊

log(1− ε)

log(ρ)

⌋

=: N (23)

Note that a larger infeasibility tolerance ε implies a larger

value N . To observe the evolution of the bandwidth cost

as a function of the infeasibility tolerance, we ran tests

for N = 0, 10, . . . , 80. The solutions (see Fig. 2), were
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Figure 2. Bandwidth cost as a function of the infeasibility tolerance

obtained by solving the (enhanced) formulation D (as further

described in Table II) to optimality, which took several hours

(even days) of computation for each instance. As illustrated

in Fig. 2, the total bandwidth cost decreases as we admit

larger values for the infeasibility tolerance (N augments).

For N = 0, assuming the lowest modulation schemes for all

links, the network cannot provide enough capacity to satisfy

all the traffic demands, hence this problem is infeasible. For

N = 10 (ε = 0.01), the bandwidth cost is 38.6% higher

than the bandwidth cost for N = 80 (ε = 0.077) and

68.4% higher compared to the case where we do not use

any optimization (i.e., we assign 28 MHz for every link).

For N = 10, 20, . . . , 50, the decrease in costs becomes

evident with the degradation of the network reliability. For

N = 60, 70, 80, the reliability constraint (23) does not affect

the cost of the solutions because the number of links we need

to consider using the highest modulation schemes to satisfy

all the traffic requirements is smaller than 60.

Comparison of the formulations: To study the gain of

applying the valid inequalities introduced in Section IV,

we performed tests for each of the four different formu-

lations A, B, C, D, according to Table II. Note that in

formulations B and D also inequalities (16) are added

although these do not contribute to an improvement of the

objective – the ILP solver, however, can benefit from those

to generate its own valid inequalities. We manually identified

a restricted, but sufficiently large (432 cutsets in total), set

of cutsets of the type (S, S) that were used to generate

the valid inequalities. As typical examples, according to the

node labeling of Fig. 1, we considered the following sets S:

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10},

{v4, v5, v9, v10, v14, v15, v19, v20, v24, v25},

{v1, v2, v3, v6, v7, v11},

{v1, v2, v6, v7, v11, v12},

{v18, v19, v20, v21, v22, v23, v24, v25}.

Table II
DIFFERENT FORMULATIONS W.R.T THE VALID INEQUALITIES

Formulation Cutset Type1 Type2
A no no no
B yes no no
C no yes yes
D yes yes yes

Due to computational limitations, first a limit of 30000

nodes (LP relaxations) of the branch-and-bound process is

set. In addition, as the size and the complexity of the LP

relaxations vary according to each formulation, instead of

imposing a limit on the number of nodes, we also perform

tests where we set a time limit of 1 hour of computation.

All other solver settings are preserved at their defaults.

Fig. 3 illustrates the optimality gaps achieved for the

different formulations considering a limit on the number

of nodes (Fig. 3(a)) and execution time (Fig. 3(b)), along

with the best feasible solutions (Fig. 3(c)) and lower bound

values (Fig. 3(d)) considering the first scenario. With re-

spect to the optimality gap, the adding of valid inequalities

improves the performance of the ILP solver in both sce-

narios. Formulation B performs significantly better than the

basic problem formulation A. Formulation C also improves

the basic problem formulation A for most cases, but it

does not perform as well as formulation B. Actually, the

valid inequalities Type 1 and Type 2 are more useful in

conjunction with cutset inequalities. In fact, formulation D

presents the best results in terms of the achieved optimality

gap for most cases. Nevertheless, there are no significant

differences among feasible solutions (see Fig. 3(c) – lower

values mean better solutions) found by each formulation to

explain the better performance of formulations B and D.

In Fig. 4, we compare the performance of the different

formulations according to the number of LP relaxations.

Note that, in general, the optimality gap decreases rather

quickly until finding a barrier in a given level, while the

lower bounds defined by the LP relaxations improve rather

slowly, suggesting that much computational effort is made

to prove the optimality of the current feasible solutions.

Formulations B and D coped better with the task of finding

tighter lower bounds (see Fig. 3(d) – higher values mean

better lower bounds), and this explains in part why these

formulations provide lower optimality gaps.

VI. CONCLUSION

In this paper, we have presented a chance-constrained

programming approach to tackle the problem of assigning

bandwidth for reliable fixed broadband wireless networks.

We introduced mathematical formulations and proposed

cutset-based valid inequalities for this problem. In our com-

putational studies, we discussed the price of reliability and

compared the performance of different cutset inequalities.
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Figure 3. Optimality gap, best solution and lower bound values achieved for the different formulations
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(c) N = 30

0%

5%

10%

15%

20%

25%

30%

0
250

0
500

0
750

0
100

00
125

00
150

00
175

00
200

00
225

00
250

00
275

00
300

00

# nodes

o
p

ti
m

a
li
ty

 g
a

p

A B C D

(d) N = 40
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(e) N = 50
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(f) N = 60
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(g) N = 70
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(h) N = 80

Figure 4. Performance of the different formulations according to the number of LP relaxations

As future work, we intend to investigate more realistic

network topologies and radio scenarios. In addition, we

envisage to study the impact of different aspects (e.g.,

equipment and frequency diversity, traffic fluctuations) on

the reliability of the network.
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