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Abstract— We consider an information theoretic model that de-
scribes parallel reception of a common signal by many receivers.
The signal is distorted by noise and independently decoded
by each receiver. Receivers cooperate in the sense that the
outcome is conveyed to a decision center, which makes the final
decision on the received signal by a majority vote. A potential
scenario which could be described by this model is a cluster
of base stations jointly receiving signals from a mobile station
and conjoining individual decodings. Similar principles apply for
cognitive radio setups where a secondary user employs many
weak subcarriers, subject to sudden drop out by occupation from
the primary users. The whole system is modeled as a cascade of
channels, and quality of information exchange is measured by
mutual information. This allows for modeling and optimizing
quantization and detection in a unifying approach. Numerical
evaluations demonstrate that the increase of mutual information
by using additional channels is only logarithmic. 4-QAM is
investigated as a concrete example and system performance is
numerically investigated. The model in this paper is motivated by
one used for describing information exchange in biological neural
networks, revealing so called stochastic resonance by adding noise
to signals.

I. INTRODUCTION AND MOTIVATION

Analytical models are needed in order to quantify the

effect of transmission over parallel channels and cooperatively

combining information. On one hand, such models should

describe all relevant effects, on the other hand, they should be

simple enough to allow for analytical calculus and conclusion.

In this paper, we suggest a biophysically inspired model, which

explains and quantifies at least partial aspects of cooperation

when using wireless channels in parallel, making individual

assessments and thereafter merging information into a single

decision.

Present wireless communication systems are highly opti-

mized by using coding and multiaccess schemes that achieve

reliable communication at highest possible rates. Modern

digital communication systems come very close to the Shan-

non bound, which cannot be exceeded by whatever practical

implementation. Biological communication and information

systems in contrast have been optimized by evolution subject

to different design criteria. Biological information channels

use a rate which ensures survival and proliferation of the

species. Signaling and communciation between cells, within

the brain or between entities of a species are developed by

evolution to a degree such that creatures are able to cope

with environmental challenges. Speed and capacity are not the

primary concerns, if both are sufficient they will no more be

an objective of evolutionary optimization.

For biological systems communication and information

exchange has to be extremely reliable in a wide range of

situations. If some information sources or channels are not

operational, their role should be taken over by others, still

functional. Massive parallelism seems to be the solution to this

problem in biological systems. The retina in the human eye,

inner hair cells in the auditory cochlea, and the semicircular

canals of the human ear, e.g., process information in parallel

and convey quantized signals to the brain. Nerve tracts serve

as channels and information is mainly processed in the brain,

often after local quantization and compression. Low energy

consumption paired with simplicity, efficiency and adaptability

are further important objectives for information exchange in

living organisms.

In this work, we study bio-inspired communication over

parallel channels by the following class of models. A common

signal is observed by many receivers, each afflicted by noise.

At each receiver, signals are decoded and the result is reported

to a central decision making unit. The measurement of each

node is then combined into a single decision, which is expected

to represent the original input signal. Practical applications

that are covered by this model may be cellular networks,

where signals of a mobile station are received by a cluster

of cooperating base stations. Furthermore, in OFDM cognitive

radio idle channels may be occupied by secondary users. They

must be vacated as soon as primary users raise demand. Hence,

a system of parallel channels is cooperatively used, some of

which may easily become unavailable. The goal of this paper

is to quantify such effects.

The model in this paper is adapted from a subclass of so

called stochastic pooling networks, a denotation first coined

by [1] for a binary detection problem. This class of networks

has emerged as a useful model for many applications and

has ignited a whole series of publications. An overview of

potential applications is given in [2], [3]. Artificial sensor net-

works, digitized beamforming, stochastic resonance, biological

neurons, cochlear implants and also complex social networks

are prominent examples and widely investigated.
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The effect that the presence of noise can enhance the

detection of signals is called stochastic resonance (SR). This

phenomenon is often observed in nature and a variety of man-

made systems. Natural systems such as the animal and human

brain or the visual, auditory and olfactory systems utilize

stochastic resonance to enhance stimulus detection. The effect

of noise onto detecting below threshold, time variant signals in

biology and technological applications is investigated in [4]. A

comprehensive review of models and applications in biology

is given in [5].

However, not only the detection of subthreshold signals

may gain from SR, also suprathreshold SR can increase the

total amount of information for parallel channels with multi-

threshold devices, as is demonstrated in [6]. In this work, a

common Gaussian input signal X is observed by n sensors,

each subject to independent Gaussian noise, 0-1-quantization

applies with equal threshold values ϑ = E(X). The number

of 1’s then forms the output signal. Fig. 1 with binary

quantization and U = u(Y1, . . . , Yn) =
∑n

i=1 Yi specifies

this model. Simulation and numerical computations in [6]

demonstrate in concert that mutual information between input

and output is enlarged by the presence of noise, particularly

as the number of threshold devices increases.

The final step of combining quantized information into a

single decision corresponds to information fusion, which is

a well investigated subject in the literature. However, most

papers investigate error probabilities in a Bayesian setup, see

[7], while in this work emphasis is laid on maximizing mutual

information from a source to a decision center.

In this paper, we approach the problem from an information

theoretic point of view. Mutual information, I(X;U), between

a certain stochastic signal X and output U is used to describe

the amount of information a channel is able to convey. We

investigate mutual information stagewise between (i) the input

and noisy observations hereof, (ii) observations and decoded

signal, and finally (iii) between individual decodings and the

final output by the central decision making unit. The final

decoding is based on a majority vote over all individual

observations. Since separately for each stage the outcome is a

deterministic function of a stochastic input, mutual information

coincides with the entropy of the output, as is demonstrated

in section II. The majority vote is described by the maximum

number of decisions for some signaling point. This leads to

the maximum component of multinomially distributed random

variables, whose distribution is difficult to obtain. However,

an efficent numerical algorithm is available and used to

determine the entropy of the final decision step. In a series

of numerical evaluations we investigate the resilience of such

parallel systems by varying the number of available channels.

II. MATHEMATICAL PREREQUISITES

Mutual information between two random variables X and

Y is denoted by I(X;Y ) and generally defined as

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X).

Let q be a function such that Y = q(X) is well defined. Since

H
(

q(X) | X
)

= 0 it follows from the above that

I
(

X; q(X)) = H
(

q(X)
)

. (1)

This identity will be used a number of times in the present

work. Of particular interest is the case that function q repre-

sents quantization.

We call each Lebesgue measurable function q from V ⊆
R

N , the N -dimensional Euclidean space, into the set of

integers {1, . . . ,M} an M -quantizer, q : V → {1, . . . ,M}.
Let Vi = q−1

(

{i}
)

denote the preimage of the singleton

set {i}. Obviously, V1, . . . ,VM is a partitioning of V . Vice

versa, any partitioning V1, . . . ,VM defines an M -quantizer q
by setting q(v) = i whenever v ∈ Vi, i = 1, . . . ,M .

Let V be a random variable with density f . Optimum quan-

tizers q that maximize mutual information I(V ; q(V )) between

V and q(V ) are characterized in the following proposition.

Proposition 1: Some M -quantizer q∗ is a solution of

max I(V ; q(V )) over all M -quantizers q

if and only if
∫

V∗

i

f(v)dv = 1
M for all i = 1, . . . ,M , where

V∗
i = q∗−1

(

{i}
)

denotes the preimage of the singleton {i}.

Proof. From (1) we conclude that

I
(

V ; q(V )
)

= H(g1, . . . , gM )

with gi = P (V ∈ Vi), i = 1, . . . ,M . H(g1, . . . , gM )
is maximized for the uniform distribution gi = 1

M for all

i = 1, . . . ,M , which can always be achieved by an appropriate

choice of the sets Vi.

Optimum quantization hence means to split the image

of random variable V into M equiprobable disjoint subsets

V∗
1 , . . . ,V

∗
M , each representing a quantization stage. In [8],

the same concept has been applied to the quantization of log-

likelihood ratios in coded modulation systems.

III. THE SYSTEM MODEL

Assume that there are n nodes, e.g., base stations which

listen to a transmission of a mobile, say. We consider trans-

mission symbol-wise and assume that the mobile uses symbol

constellation S = {s1, . . . , sM} ⊂ C. The incoming bit stream

is groupwise mapped onto the symbols, which generates

random variable X with support S , governed by distribution

(p1, . . . , pM ).
At each node i the transmitted symbol X is received,

however, subject to additive random noise modeled by the

random variables Wi, i = 1, . . . ,M , each having density f .

We assume that W1, . . . ,Wn are stochastically independent,

also independent of X . The noisy observation at each receiver

is denoted by

Vi = X +Wi, i = 1, . . . , n.

Each receiver decodes the signal by optimum quantization

forming subsets V∗
1 , . . . ,V

∗
M , each related to one of the

symbols si. This process generates discrete random variables
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Fig. 1. A parallel channel model for joint detection.

Y1, . . . , Yn each with support {1, . . . ,M}. The final joint

decision about the incoming signal X is made by a majority

vote. Symbol k is chosen if it is decoded by the majority of

receivers. The system model is depicted in Fig. 1.

IV. OPTIMUM QUANTIZATION

We first consider optimum quantization separately for each

subchannel in Fig. 1 and therefor momentarily fix index i.
Optimality is meant in an information theoretic sense such

that

max I
(

Vi; q(Vi)
)

over all M -quantizers q

must be solved.

The distribution of Vi itself is rather complicated. If Wi

possesses some density fW and the distribution of X with

support {s1, . . . , sM} is given by (p1, . . . , pM ), then the

distribution of Vi is the same for each i, given by the mixture

density

fV (v) =

M
∑

k=1

pkf(v − sk).

Its entropy is hard to compute in general. One of the few

papers which deal with this problem in the case of Gaussian f
is reference [9]. Numerical and asymptotic results are achieved

for a symmetric one-dimensional mixture of two Gaussians.

Whatever this distribution in concrete is, according to

Proposition 1 the optimum quantizer q∗ will achieve a discrete

uniform distribution over {1, . . . ,M} such that

P (Yi = k) =
1

M
, k = 1, . . . ,M.

From the above, after optimum quantization Y =
(Y1, . . . , Yn) is a discrete random vector with support

{1, . . . ,M}n. All marginals are uniform, i.e., P (Yi = k) = 1
M

for all k = 1, . . . ,M . Moreover, Y1, . . . , Yn are conditionally

stochastically independent, given X . The conditional distribu-

tions P (Yi = k | X = ℓ), k = 1, . . . ,M , given {X = ℓ},

ℓ = 1, . . . ,M , are the same for all i = 1, . . . , n. We denote

the conditional probabilities by

pℓk = P (Yi = k | X = ℓ), k, ℓ = 1, . . . ,M.

s1s2

s3 s4

d

V1V2

V3 V4

d

Fig. 2. 4-QAM, each point selected with equal probability 1/4. Contourlines
of the noise distribution are depicted by dotted circles.

The joint distribution of (Y1, . . . , Yn) may then be written as

P (Y1 = k1, . . . , Yn = kn) =

M
∑

ℓ=1

pℓ · pℓ,k1
· · · pℓ,kn

.

Although the marginals are all known to be uniform

when applying optimum quantization, the joint distribution of

(Y1, . . . , Yn) and the conditional probabilities pkℓ are difficult

to determine in general. However, more can be done if the

signaling constellation and the error distribution are known

and not too complicated, as is the case for 4-QAM.

V. 4-QAM

We investigate the example of 4-QAM with four signaling

points

s1 = (d, d), s2 = (−d, d), s3 = (−d,−d), s4 = (d,−d),

as depicted in Fig. 2, each occurring with probability pk =
1/4. Let f(w) denote the density of Gaussian noise with

expectation zero and covariance matrix σ2
I2.

The set Vℓ corresponding to decoding of sℓ is assumed to

be the ℓ-th quadrant as shown in Fig. 2. It follows that

pℓk = P (Yi = k | X = ℓ) =

∫

Vk

f(w − sℓ)dw.

Because of symmetry only three different values occur and the

matrix of pℓk may be arranged as

(

pℓk
)

=









a b c b
b a b c
c b a b
b c b a









. (2)

Let Φσ(t) =
1√
2πσ

∫ t

−∞ e−w2/(2σ2)dw denote the cumula-

tive distribution function of the Gaussian with variance σ2.

The values of a, b, c are given by

a =
(

1− Φσ(−d)
)2
,

b =
(

1− Φσ(−d)
)

Φσ(−d),

c = Φ2
σ(−d).
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If X is uniformly distributed, then from the special form of

(2) it follows that P (Yi = k) = 1/4, which demonstrates

optimality of the partitioning V1, . . . ,V4 with I(Vi;Yi) =
H(Yi). Additionally using that I(X;Yi) = H(Yi)−H(Yi | X)
we obtain with M = 4

I(Vi;Yi) = logM and I(X;Yi) = logM −H(a, b, b, c)

where H(a, b, b, c) denotes the entropy of the stochastic vector

(a, b, b, c).

VI. DETECTION FUSION

We investigate two different ways to combine information

from the individual decodings Yi, i = 1, . . . , n, into a

single decision. First, the number of decision in favor of

symbol ℓ is considered. The outcome will be a vector of

integers (N1, . . . , NM ), component ℓ counting the number

of decodings of symbol ℓ. Secondly, to further compress

information into a single real value,
∑N

i=1 Yi is explored. This

is a generalization of the sum criterion for binary quantization,

see [2], [3], [6], and sensitive to identifying which symbol has

been emitted by random varibale X .

To formalize the first approach we introduce random vari-

ables Nℓ which count the number of detections of symbol ℓ,

Nℓ = #{1 ≤ i ≤ n | Yi = ℓ}, ℓ = 1 . . . ,M.

We aim at determining the mutual information

I
(

(Y1, . . . , Yn); (N1, . . . , NM )
)

. By (1), mutual information

coincides with the entropy H(N1, . . . , NM ). To compute this

entropy the distribution of (N1, . . . , NM ) is needed.

For this purpose, we first condition on the event {X = ℓ}.

The conditional distribution of (N1, . . . , NM ) given {X = ℓ}
is the multinomial with parameters pℓ,1, . . . , pℓ,M and n,

P (N1 = n1, . . . , NM = nM | X = ℓ)

=
n!

n1! · · ·nM !
pn1

ℓ1 · · · pnM

ℓM

whenever nk ≥ 0,
∑M

k=1 nk = n, and 0 otherwise. The joint

distribution of (N1, . . . , NM ) then reads as

P (N1 = n1, . . . , NM = nM )

=
n!

n1! · · ·nM !

M
∑

ℓ=1

pℓ p
n1

ℓ1 · · · pnM

ℓM

(3)

In a second approach, the information from (Y1, . . . , Yn) is

further compressed into a single real value by random variable

U =

n
∑

i=1

Yi =

M
∑

k=1

kNk.

The distribution of U is obtained as

P (U = s) =
M
∑

ℓ=1

pℓ
∑

i1+···+in=s

pℓi1 · · · pℓin (4)

The entropy of (N1, . . . , NM ) and U can be easily com-

puted from (3) and (4), respectively. An explicit form of the

distributions seems to be hard to achieve. Numerical values

for 4-QAM are determined in the next section.
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(
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)

as a function

of σ2 for n = 1, 2, 4, . . . , 128. Stochastic resonance is observed.
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VII. NUMERICAL TESTS FOR 4-QAM

We consider modulation alphabet 4-QAM with d = 1, equal

symbol probabilities p1 = p2 = p3 = p4 = 0.25 and different

numbers n of subchannels. The noise vectors Wi are assumed

to be stochastically independent and follow a two-dimensional

Gaussian with expectation 0 and covariance matrix σ2
I2. The

values a, b, c in (2) are easily computed and given in Table I,

which gives pℓ1, pℓ2, pℓ3, pℓ4 in (3) and (4).

The probability mass function of (N1, N2, N3, N4) from

(3) and the corresponding entropy are computed numerically

for σ2 between 10−2 and 103 and n = 2k, k = 0, 1, . . . , 7.

Mutual information I
(

(Y1, . . . , Yn); (N1, . . . , N4)
)

is depicted

in Fig. 3 as a function of σ2 for different numbers of

subchannels n. If σ2 is close to zero, no errors occur and the
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mutual information amounts to two bits per channels use. With

increasing variance stochastic resonance may be observed in

the sense that larger noise helps conveying information in

a many-channel system, see [6] for a similar effect. Mutual

information of the channel, I
(

(Y1, . . . , Yn); (N1, . . . , N4)
)

,

first increases to a certain maximum and decreases thereafter.

In the limit as σ2 → ∞, I tends to the entropy of a

multinomial distribution with parameters n and ( 14 ,
1
4 ,

1
4 ,

1
4 ).

To quantify the influence of the number of channels, in

Fig. 4 mutual information is represented as a function of n
for moderate σ2 values. Because of the logarithmic shape of

mutual information as a function of the number of subchannels

n, failure of a few channels out of many will only marginally

deteriorate the quality of information transfer. However, if

merely a few channels are available, then each one counts.

σ2 Φσ(−1) a b c
0.5 0.0786 0.8489 0.0725 0.0062
1.0 0.1587 0.7079 0.1335 0.0252
1.5 0.2071 0.6287 0.1642 0.0429
2.0 0.2398 0.5780 0.1823 0.0575

TABLE I

NUMERICAL VALUES pℓk FOR 4-QAM.

Failure of only one will already drastically degrade system

performance.

Finally, information from the individual detectors is com-

pressed into a single real value by U =
∑n

i=1 Yi. Similar to

the above, mutual information I
(

(Y1, . . . , Yn);U
)

is depicted

in Fig. 5 as a function of σ2 for n = 1, 2, 4, . . . , 128. Although

mutual information is lower than in the previous case, stochas-

tic resonance is more prominent here. Analogously, mutual

information is shown as a function of the number of channels

n for moderate values of σ2 in Fig. 6.

VIII. CONCLUSIONS

We think that the model used in this paper is able to quantify

certain aspects of cooperative communication in many-channel

systems. It can certainly be extended to cover a wider range

of situations, although at the price of increased analytical and

numerical complexity. The main contribution of this work

is a model for cooperative channel systems, providing the

mathematical background for determining mutual information

and quantization stagewise, and deriving explicit results for

quadrature amplitude modulation with four signaling points.
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