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Abstract—In gene mapping, the science of finding connections
between the genotype and the phenotype, the revealing of
complex, nondeterministic connections is an important problem.
Tools from information theory, especially the mutual information,
have proven to be valuable. This arises the need to estimate
the mutual information from a set of samples, and to know
the distribution of the estimator. In this work, the established
maximum likelihood estimator for the mutual information is
examined using simulated data, and it is compared to an approx-
imation. Additionally, another estimator based on preprocessing
the data using B-splines is considered, and compared to the
conventional estimator and to the well-established chi-square test
for independence.

I. BACKGROUND

Since the discovery of the deoxyribonucleic acid (DNA)
as carrier of the genetic information, and the decipherment
of the coding of the proteins, there has been great interest
in connections between the genome of an individual and its
outward appearance, the phenotype. This is especially true
for all kinds of diseases. Since then, several results have
been achieved in gene mapping, the science of finding such
dependencies. The dependencies that were the easiest to find
are the so-called Mendelian traits, where a genetic marker and
a phenotype trait are connected in a deterministic way.

However, there are other more complex dependencies which
are harder to discover. Methods from information theory have
proven to be valuable tools for this purpose in recent years, see
for example [1] and [2]. This work presents some methods,
which are based on the concept of mutual information, and
deals with the problems that arise in the practical application.

A. The Genetic Code

As explained in [2] and [3], the deoxyribonucleic acid
(DNA) as carrier of genetic information consists of two
complementary strands of nucleotides, a large number of bases
attached to a backbone. Four different values are possible
at each locus, coded by the four bases Adenine, Guanine,
Cytosine and Thymine. Figure 1 shows a sketch of a short
section of the DNA. Each individual possesses two sets of
DNA, one inherited from the mother and one from the father.

The human DNA consists of about 3 billion base pairs and
is largely identical for all individuals. There are about ten mil-
lion positions, called single nucleotide polymorphisms (SNP),
where different alleles appear with a significant probability.
These positions are responsible for the differences between

Fig. 1. The Deoxyribonucleic Acid (DNA)

human individuals that are caused genetically. Usually, two
different values do appear on such a locus, for example C and
T. The allele with the higher probability (e.g., C) is called the
major allele, the other one is the minor allele. Considering
the value of the SNP on both sets of DNA in this case yields
the four different genotypes CC, CT, TC and TT, in which
it is often not possible to distinguish between CT and TC. If
the minor allele T causes some disease or phenotype trait in
general, there are two main ways in which this can occur. If
only those individuals carrying this allele on both sets of DNA
(genotype TT) are affected, the allele is called recessive. If
the genotypes CT and TC are also affected, the allele is called
dominant.

B. Mutual Information

Let X and Y be two discrete random variables with supports
X = {x1, . . . , xm} and Y = {y1, . . . , ym′}, respectively, and
a distribution given by

P (X = xi) = pi•,

P (Y = yj) = p•j ,

P (X = xi, Y = yj) = pij .

Mutual information as a measure of dependency between X
and Y is defined, e.g., in [4] as

I(X;Y ) =

m∑
i=1

m′∑
j=1

pij log2

pij
pi•p•j

.

The choice of the base of the logarithm alters the result just
by a scaling factor. Throughout this work the logarithm to
the basis two will always be used. The mutual information
I(X;Y ) is zero if and only if X and Y are stochastically
independent.

1) Application in Gene Mapping: Gene mapping means
finding connections between the genotype of an individual and
the outward appearance, the phenotype. While this is easy for
the so-called Mendelian traits, where a phenotype trait depends
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on a single genetic marker in a deterministic manner, more
complex connections are harder to find, especially if they are
not deterministic. The information-theoretic approach given
in [1] interprets the genotype as a random variable X and
the phenotype as a random variable Y . While X will often be
ternary (as there are three distinguishable genotypes), Y might
be binary or have more outcomes. It might even be continuous
if the regarded trait is a continuous measure. Among other
methods, the mutual information I(X;Y ) is a measure of
dependency that reveals whether X and Y are independent
or not.

2) The Estimation Problem: Applying the method men-
tioned above usually requires to calculate the mutual infor-
mation from some samples, without knowledge about the
actual distribution. A suitable estimator for this purpose is the
maximum likelihood estimator that is presented in [5] and [6].
Let N be the number of samples, (x̃1, ỹ1), . . . , (x̃N , ỹN ) the
observed outcomes, and

ni+ = |{k ∈ {1, . . . , N} | x̃k = xi}| ,
n+j = |{k ∈ {1, . . . , N} | ỹk = yj}| ,
nij = |{k ∈ {1, . . . , N} | x̃k = xi, ỹk = yj}|

the frequencies of occurrence. Using the relative frequencies
as an estimation for the probabilities yields the estimator

ÎN (X;Y ) =

m∑
i=1

m′∑
j=1

nij
N

log2

nijN

ni+n+j
.

This estimator is a random variable that depends on the drawn
samples. It is not difficult to prove that it converges almost
surely to the mutual information I(X;Y ) when the number
of samples rises to infinity, this is for example shown in [6].

The distribution of the estimator is not known, but according
to [1] and [5] there exists a second-order approximation

ÎN (X;Y ) ≈ 1

2 ln 2

m∑
i=1

m′∑
j=1

(nij − ni+n+j)
2

ni+n+jN2

based on the Taylor series around ÎN (X;Y ) = 0, which
corresponds to the case where X and Y are stochastically
independent. This yields an approximative gamma distribution

ĨN ∼ Γ

(
1

2
(m− 1)(m′ − 1),

1

N ln 2

)
for the independent case, which for example is useful to
compute confidence intervals for hypothesis testing. The pro-
perties of the gamma distribution imply that the cumulative
distribution function FĨN

(z) of ĨN is reciprocally scaled with
N on the z axis, so

FĨN
(z) = FĨ1

(zN)

holds, and doubling the number of samples bisects all quan-
tiles. An extension of the approximation to weakly dependent
random variables is given in [5].

TABLE I
DISTRIBUTION TABLE FOR THE INDEPENDENT CASE

0 1
∑

CC 0.55296 0.08704 0.64
CT/TC 0.27648 0.04352 0.32

TT 0.03456 0.00544 0.04∑
0.864 0.136 1

TABLE II
DISTRIBUTION TABLE FOR THE DEPENDENT CASE

0 1
∑

CC 0.576 0.064 0.64
CT/TC 0.256 0.064 0.32

TT 0.032 0.008 0.04∑
0.864 0.136 1

II. RESULTS AND DISCUSSION

A. Maximum Likelihood Estimator

In the example constructed for the simulation, the ternary
random variable X represents the genotype. The minor allele
T is assumed to appear with a probability of 0.2 on each
DNA set. So the genotypes CC, CT/TC and TT have the
probabilities 0.64, 0.32 and 0.04, respectively. The phenotype
trait Y is binary, thus, there are six bins into which the
observations can fall. The value Y = 1 is assumed to appear
with probability 0.136 under all genotypes in the independent
case. Table I shows the entire distribution table for X and Y .
In the dependent case, the allele T is assumed to be dominant,
and the probability for Y = 1 is assumed to be 0.1 for the
genotype CC, and 0.2 for the genotypes CT/TC and TT. The
distribution table for the dependent case is shown in Table II.
The probablities were chosen in such a way that the marginal
distributions are identical in the independent and the dependent
case. The true value of the mutual information in the dependent
case is 0.0136.

For both cases, the distribution of the estimator ÎN (X;Y )
is computed by simulation for a different number of samples
N . The cumulative distribution functions for 100 and for
1000 samples are shown in Figure 2. The marked thresholds
are chosen such that the type I error and the type II error
are equal. The achievable error level for 100 samples is
0.3566 (±0.0005), for 1000 samples it is 0.0339 (±0.0002)
(all numerical values are given rounded up to the fourth
decimal place in this work, and the standard deviation is given
rounded up to one significant decimal place). As expected,
the selectivity is higher for a larger number of samples, the
decision between the independent and the dependent case can
be made with a lower error probability.

B. Comparison with the Approximation

For the independent case, Figure 3 shows a comparison of
the simulated distribution of the estimator and the approxima-
tive distribution given above. While there can be seen quite a
deviation between the two distributions for ten samples (which
indeed is a really small number of samples for six bins), they
are already almost identical for 100 samples.
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Fig. 2. Independent Case vs. Dependent Case
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Fig. 3. Comparison of Results and Approximation

The scaling property of the approximation, which is already
mentioned in [5], is reflected in Figure 4, where the cumulative
distribution function of the simulated estimator is plotted on
a logarithmic scale for different numbers of samples. Each
time the number of samples is multiplied by ten, the curve
is shifted to the left by one order of magnitude, apart from
that its shape does not change substantially. This matches
the convergence property that was shown earlier, as well as
the bias property of the estimator that is mentioned in [6].
Some more comparisons between the simulation and the
approximation will be presented later, in the course of the
comparison with the chi-square test.

C. Usage of B-Spline Functions

A new approach for the estimation of mutual information,
especially for continuous data, is given in [7]. Each observa-
tion is not counted in just one bin as before, but in several
bins using B-spline functions as weighting functions. These
counts, which are not restricted to integers any more, are used
to calculate the estimator as before. For two-dimensional data,
the weighting functions for both dimensions are multiplied
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Fig. 4. Distribution of the MI Estimate on a Logarithmic Scale
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Fig. 5. B-Spline Functions

to obtain the weighting for each observation. The recursive
definition of the functions is presented in [7]. For M = 5 bins
and spline order k = 3, these functions Bi,k(z) are shown in
Figure 5.

To compare this approach to the conventional estimator
ÎN (X;Y ), a continuous example is constructed. In the inde-
pendent case, (X,Y ) is assumed to be uniformly distributed
on [0, 1]2, while in the dependent case the joint probability
density function is

fXY (x, y) = (1 + (2x− 1)(2y − 1)) I[0,1]2(x, y)

on the same support. In both cases the marginal distributions of
X and Y are uniform distributions on [0, 1]. Figure 6 shows
the results for 100 samples and five bins for X and for Y .
The conventional estimator (the same as before, of course
applied to the observations after discretization by binning) is
denoted by k = 1, while k = 3 marks the spline estimator.
The value β = 0 designates the independent case, and β = 1
the dependent case. While the error level for the conventional
estimator is 0.2305 (±0.0004), the spline approach achieves
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Fig. 6. Comparison for Continuous Data

an error level of 0.0896 (±0.0003), which is clearly better.
1) Application to Discrete Data: To apply this new method

to discrete data, the observations have to be interpreted as
continuous. An observation falling into a certain bin has to be
assigned some value, rationally a value that is inside this bin.
Here, two ideas are examined. The first one is to assign the
central point of the bin deterministically to each observation,
the second one is to assign a value somewhere in the bin,
drawn according to a rectangular distribution. The second idea
proved clearly worse in all examined examples, thus it was not
pursued any further.

For the same example that was already used before (ternary
genotype X , binary phenotype Y , 1000 samples), Figure 7
compares four different methods. As their test-statistics can
not be compared directly, the distribution of the p-value for
the dependent case is used instead. This value reflects the
probability that an observation at least as unbalanced as the
actual sample appears if the null hypothesis (independence)
is valid. While the p-value would be uniformly distributed
on [0, 1] for independent samples, smaller p-values appear
with higher probabilities for dependent samples, as the null
hypothesis seems less likely. The higher the probabilities for
small p-values, the better the test works for deciding whether
the samples are independent or not.

The first method is the well-established chi-square test
for independence, which was already extensively used in
genetic studies, e.g. in [8]. The second and the third are both
applications of the mutual information approach with splines,
once the distribution of the estimator for the independent case
was approximated, and once it was simulated, too. Using the
approximation, this approach performs slightly worse than
the chi-square test, otherwise it performs better, at least for
p-values of about 0.07 and higher. For the fourth method,
the spline method, the distribution of the estimator in the
independent case had of course to be simulated, as there is no
approximation known. This approach is clearly the best one
in a wide range of p-values, including the value 0.05 which
is often relevant.
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Fig. 7. Comparison for Discrete Data

2) Application to Mixed Data: In the mixed model, X
represents a ternary genotype as before, with the same distri-
bution as in the example above. The random variable Y now
represents a continuous phenotype trait. In the independent
case, Y is uniformly distributed on [0, 1] for all genotypes. In
the dependent case, the density of Y is

fY (y) = (1.18− 0.36y)I[0,1](y)

for the genotype CC and

fY (y) = (0.68 + 0.64y)I[0,1](y)

for the genotypes CT/TC and TT, with I[0,1](y) denoting the
indicator function. Again, the marginal distributions in the
independent and the dependent case are identical. The number
of bins for Y is ten, the number of samples is 1000.

The results for this example are shown in Figure 8. Here,
the mutual information approach with approximation performs
clearly better than the chi-square test, and also outperforms
the same approach without approximation in the important
range below 0.25. Our new spline approach performs much
better than the former methods. Applying the spline method
just to the continuous phenotype trait Y already delivers an
impressive enhancement, but some more is possible when the
spline method is applied to the discrete genotype X , too.

III. METHODS

A. Simulation

To obtain the distribution of the MI estimator, a simple
simulation was used. Given the distribution of X and Y , the
number of samples N and other details about the procedure
(e.g. if the conventional or the spline estimator is used), the
samples are drawn according to the given distribution, and
the estimator is computed. This is repeated several times to
gain certain knowledge about the distribution of the estimator.
For the simulations in this work, one million cycles of drawing
samples and computing the estimator were used. The observed
values were stored in a binary tree to allow a sorted output.
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Fig. 8. Comparison for Mixed Data

1) Error Analysis: Whenever data is obtained by simulation
instead of exact calculation, the accuracy of the simulation is a
point that has to be considered. Most of the curves represented
here show the cumulative distribution function of the estimator,
this means at each point the value of the curve represents the
p-value, the probability that the MI estimator does not exceed
this point. The estimator for this p-value is the proportion of
the simulation runs in which the MI estimator did not exceed
the point.

When p is the true p-value at some point and N ′ is the
number of simulation runs, the number of runs n in which
the value is not exceeded is n ∼ B(N ′, p) distributed with
expectation N ′·p and variance N ′·p·(1−p). Thus the estimator
p̃ = n/N ′ has the expectation E(p̃) = p, the variance

Var(p̃) =
Var(n)

N ′2
=
p · (1− p)

N ′

and hence the standard deviation

σp̃ =
√

Var(p̃) =

√
p · (1− p)

N ′
.

As the simulations were done with one million runs each, the
standard deviation reaches a maximum of 0.0005 for p = 0.5
(and tends to zero when p tends to zero or one). This is far
below the accuracy of the plotted curves, thus error bars would
be simply invisible if they had been provided.

To verify the error analysis, one of the simulations for
Figure 2 (1000 dependent samples) was run a second time,
the difference of the values from these independent runs is
shown in Figure 9. For two independent estimates p̃ and p̃′,
each computed by one million runs, the standard deviation of
their difference is approximately

σp̃′−p̃ =

√
p̃ · (1− p̃) + p̃′ · (1− p̃′)

106
.

The boundaries given by the onefold standard deviation are
also plotted in the figure, the outlier percentage seems reason-
able.
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Fig. 9. Error Analysis

IV. CONCLUSION

We have seen that there exists an estimator for the mutual
information which converges towards the actual value. The dis-
tribution of the estimator is not yet known, but an appropriate
approximation is available. Thus, the application of the mutual
information as a measure of dependency between some drawn
samples is feasible, since confidence intervals for hypothesis
testing can be calculated.

A new approach using B-spline functions was presented,
and it performed better than the conventional approach in
the examples presented here, even for discrete data where
no additional information is available. Developing some more
theoretical background (for example an approximative distri-
bution of the estimator) for the B-spline method leaves room
for future work.
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