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Abstract—This publication analyzes the power allocation prob-
lem for a distributed wireless sensor network which is based on
ultra-wide bandwidth communication technology. The network
has power-limited sensor nodes and it is used to classify target
objects. In the considered scenarios, the absence, the presence,
or the type of an object is observed by the sensors independently.
Since the observations are transmitted over noisy communication
channels, and are thus unreliable, the disturbed observations are
fused into a reliable global decision in order to increase the
overall classification probability. In [1] an information theoretic
approach, that aims at maximization of the mutual information,
has been employed. It enables the analytical allocation of the
given total power to the sensor nodes so as to optimize the overall
classification probability. We follow the same idea and improve
on the results in [1] by a smart selection of the sensor nodes.
Furthermore, we investigate the power constraint per sensor node
and extend the results hereby.

I. INTRODUCTION

In a recently accepted publication [1], the power allocation
problem for a distributed wireless sensor network based
entirely on ultra-wide bandwidth (UWB) technology has been
investigated. In this essay we follow the same idea and we
investigate the power allocation problem for a distributed
wireless sensor network with power-limited sensor nodes (SN).
The network is used to perform object classification, where
the type of an object is observed by the sensors independently.
UWB signals can be used for data communication between
the SNs as well as for radar applications. The approach of
misemploying the communication sensors as radar sensors,
so that the data transmission is misused as a radar beam in
order to classify a target object, helps in realizing an energy-
efficient radar system with compact and cheap SNs. A further
advantage of such radar systems is the fulfillment of major
requirements of wireless sensor networks. This exploitation
presupposes that the integration of sensing functionality into
usual UWB sensors is implementable easily without the
usage of any additional hardware units. Since the compact
and low complexity UWB sensors are limited in power and
communication capabilities, the classification performance of
a single sensor is restricted compared to that of a common
complex radar system. To obtain an appropriate overall system
performance we consider the case of distributed classification,
where the local observations of the sensors are fused into
a reliable global decision. The global decision about the
object’s type is obtained by a fusion center, which is located
at a remote location. Due to noisy communication channels

and differences in the distances between the target object, the
SNs and the fusion center, both the observations and their
transmissions are unequally disturbed. One simple way to
suppress noise interference is to increase the power of each
SN. But, if the total power of the entire network or the power-
range of the SNs is limited, then power allocation procedures
are needed in order to increase the overall classification prob-
ability. In general, for a Bayesian-hypotheses test-criterion the
mathematical function of the overall classification probability
cannot be analytically evaluated [2]. This limits the usability
of this criterion for analytical optimization of the power
allocation. Bounds, such as the Bhattacharyya bound [3], are
also difficult to use for optimizing multidimensional problems.
One simple however suboptimal analytical solution of the
power allocation problem has been proposed by [1]. However,
the power-limitation per SN has not been analyzed previously.
In this publication, we investigate the power-limitation per
SN and hereby we extend the results of [1]. Furthermore, we
improve the results by a smart selection of the active SNs.
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Fig. 1. System model of the distributed wireless sensor network.

The origin of the research on distributed detection has been
the attempt to fuse signals of different radar devices [4]. Cur-
rently, distributed detection is usually discussed in the context
of wireless sensor networks, where the sensor unit of the nodes
might be based on radar technology [5]–[7]. In a recent pub-
lication [8], the power allocation problem is analyzed where a
sensor network is used to detect target objects. Other applica-
tions for UWB radar systems, which require or benefit from
the detection and classification capabilities, are for example
localization and tracking [9] or through-wall surveillance [10].
The physical layer design for an integrated UWB radar net-
work that utilizes OFDM technology was analyzed in [11].



In the next section, we give a superficial overview of the
used system model which has been described in detail by [1].
After description of the system model, the power allocation
procedure from [1] is explained briefly. In the same section,
we extend the power allocation method without power-limited
SNs into a power allocation method with individual power
constraints per SNs. The investigation of the active sensor
selection follows afterwards.

II. OVERVIEW AND SYSTEM DESCRIPTION

Throughout this paper we denote the set of natural, real,
and complex numbers by N, R, and C, respectively. Note that
the set of natural numbers does not include the element zero.
Furthermore, we use the subset FN ⊆ N which is defined
as FN := {1, . . . , N} for any given natural number N . The
mathematical operations |z| and |z| denote the absolute value
of a real or complex-valued number z and the Euclidian length
of a real or complex vector z, respectively.

Distributed target object classification can be formally
modeled by a multiple hypotheses testing problem with hy-
potheses Hk∀k ∈ FK for a specified number K ∈ N,K ≥ 2
of different objects. We assume that all objects have the
same size, shape, alignment, and position. They only differ in
material and are classified by their complex-valued reflection
coefficients rk ∈ C, which are ordered in a strictly increasing
manner 0 ≤ |r1| < · · · < |rK | ≤ 1. Therefore, the reflection
coefficients are the only recognition features in this work.

At any instance of time a network of N ∈ N independent
and spatially distributed sensors, as shown in Fig. 1, obtains
random observations. If a target object is present, then the
received energy at the SN Sn is a part of its own radiated
energy which is reflected from the object’s surface and is
weighted by its reflection coefficient. The corresponding
random observations are assumed to be conditionally
independent for each of the underlying hypotheses. We refer
to this communication channel, between the sensors and the
target object, as the first communication link and denote all
dedicated parameters by the superscript R.

In general, the observations are not identically distributed
because the SNs have different distances dRn from the tar-
get object and their radiated powers PRn are also different.
Therefore, the signal-to-noise ratio (SNR) varies between the
SNs. Due to the distributed nature of the problem, the nth

sensor Sn performs independent measurements and processes
its respective observation by generating a local decision,
which depends only on its own observation and not on the
observations of other SNs. After deciding locally each sensor
transmits its decision to a fusion center located at a remote
location. The communication between the SN and the fusion
center is determined by the corresponding distance dCn as
well as by the transmission power PCn of the same SN.
We refer to this communication channel, between the SNs
and the fusion center, as the second communication link
and denote all dedicated parameters by the superscript C.
Furthermore, we assume that both communication channels
are non-fading channels and that all data transmissions are

affected only by additive white Gaussian noise (AWGN). We
disregard time delays within all transmissions and assume
synchronized data communication. We use two distinct pulse-
shift patterns for each SN in order to distinguish its first and
second communication link from the communication links of
other SNs as described in [12]. Each pattern has to be suitably
chosen in order to suppress inter-user interference at each
receiver. Hence, the N received signals at the fusion center are
uncorrelated and are assumed to be conditionally independent
for each of the underlying hypotheses. These received random
signals correspond to the local decisions at the SNs and are
also not identically distributed because of variation in distances
dCn as well as that of the radiated powers PCn . Unlike the local
decision rules the global decision rule depends on all observa-
tions in order to increase the overall classification probability.

All described assumptions are necessary in order to obtain a
framework suited for analyzing the power allocation problem
without studying problems of different classification methods
in specific systems and their settings.

A. Fusion of local decisions and global classification rule

In this work hard-decision rules are used for performing
the local decisions and classifying the target objects. The
thresholds τn,k ∈ R,∀n ∈ FN ,∀k ∈ FK are suitably chosen
and they must be calculated separately for every SN in order
to perform optimal classification. They depend on the prior
probabilities of the hypotheses. Their values can be calculated
by a suboptimal approach, which is described in [1].

The optimal fusion rule at the fusion center is given by
applying the Bayesian-hypotheses test-criterion [2]. It enables
the fusion of the local decisions to a global decision. The
Bayesian-hypotheses test-criterion presupposes that the prior
probabilities πk := Pr(Hk) with

∑K
k=1 πk = 1 of the hypothe-

ses Hk are known. We use this criterion to classify the target
object. However, in order to optimize the allocation of the
total power to the SNs, the corresponding overall classification
probability is needed. But, the classification probability cannot
be analytically evaluated in general. Consequently, we have
chosen a different approach for the optimization in [1], which
is based on maximization of the information flow between the
target object and the fusion center.

B. Ultra-wide bandwidth sensor nodes

We consider impulse-radio UWB (IR-UWB) sensor nodes
with pulse position modulation (PPM). Each transmitter gen-
erates two streams of data symbols sCn (t) and sRn (t).

The symbol stream sCn is used to transmit the local decisions
to the fusion center. We assume that K different modulation
symbols are available in order to assign each of them to one
type of the target objects. The transmission power PCn of this
stream is variable in order to adjust transmission power and
to enable distributed power allocation.

The symbol stream sRn establishes the radiation to the target
object and uses always the same data symbol. Its transmission
power PRn is also variable.



In order to increase the available power range at every
SN, time-division multiple-access (TDMA) method is used
to separate both streams into different time slots and to
periodically share the same power amplifier.

In order to eliminate collisions due to multiple access, each
user stream is assigned to a distinctive time-shift pattern which
are based on time-hopping sequences [12].

After superposition of both streams, a monocyclic pulse
shape filter w(t) limits the bandwidth of the signal. This
filter has to fulfill the Nyquist intersymbol interference (ISI)
criterion in order to avoid intersymbol interferences.

When this superposition is transmitted, a part of the radiated
signal sRn will be reflected from the target surface back to the
antenna. The received signal will pass through the matched-
filter w(−t) and will be decoded from its time-hopping
sequence. The additive noise signal will pass as well through
the filters at the receiver. We denote the corresponding noise
power by Pnoise. If all receiver components are linear, then we
can describe the received power by

P̃Rn|k := PRn
αR

n |rk|
2

g2(2dRn )
, ∀k ∈ FK ,∀n ∈ FN , (1)

where the transmitted power is weighted by the product of the
factors αRn > 0, |rk|2, and g−2(2dRn ). The factor αRn includes
the radar cross section, the influence of the antenna, the
impacts of the filters, and all additional attenuation of the
transmitted power. Due to the reflection coefficient rk of the
target object the received power depends on the underlying
hypothesis. The path loss function g depends on the assumed
multipath propagation channel and is usually an increasing
function of the distance between transmitter and receiver. Here,
the factor of two in the distance results from that back and
forth transmission between the transceiver and the object.

C. Fusion center

After radiation of the stream sCn by the SN Sn, the signal is
attenuated depending on the distance and it reaches the antenna
at the fusion center. The received signal is matched-filtered and
decoded from its time-hopping sequence.

In case of additive zero-mean noise and due to the assump-
tions of w(t) the received power from the nth SN is given by

P̃Cn := PCn
αC

n

g2(dCn )
, ∀n ∈ FN , (2)

where we assume that the path loss function is the same as for
the first communication link. The power P̃Cn is independent
of the underlying hypothesis because the data stream sCn has
the same power for all kinds of transmitted data symbols.

The additive noise signal will also pass through all the
filters. We assume that the noise spectral density at the
fusion center is the same as at the SNs. Due to similarity in
architecture of the fusion center and the SNs the noise power
at the fusion center is equal to Pnoise as well.

III. SUBOPTIMAL ALLOCATION OF THE TOTAL POWER

In [1], we have shown a suboptimal approach which has
been based on maximization of the information flow. The
corresponding allocation method assigns the given total power

Ptot to the SNs by separating the power allocation problem
from the object classification procedure. The following ques-
tion arises thereby: why is the limitation of the total trans-
mission power reasonable? We motivate this case of power-
limitation in the next section and conclude the corresponding
results from [1] afterwards.

A. Limitation of transmission power

We assume that both the radar and the communication signal
use the same bandwidth and are uncorrelated to each other, due
to separation of the sensing task and the communication task
into different time slots (see Section II-B). In this case and
for each new classification process, the limitation of the total
transmission power Ptot is an upper bound for the sum

N∑
n=1

PRn︸︷︷︸
Radar sensing

+ PCn︸︷︷︸
Data communication︸ ︷︷ ︸

Transmission power of one sensor for a single observation

≤ Ptot . (3)

The proposed allocation method in [1], which will be de-
scribed briefly in the next section, is based on the restric-
tion (3). Previously, we discuss some special cases of the
power constraint.

In real applications the transmission power of each SN is
also limited. Consider the case in which all SNs have the same
power-limitation Pmax with Ptot

N ≤ Pmax < Ptot. If the power
regulation, which is described in the next section, wants to
allocate a higher power to PRn > PCn of the nth SN than its
limitation, then we set the transmission power PRn equal to
its highest possible limitation given by Pmax, recalculate PCn
which is given in terms of PRn = Pmax, discard this nth SN
from the list of unallocated SNs, decrease the given total
transmission power Ptot by Pmax + PCn (Pmax), and reallocate
the remaining total power Ptot − Pmax − PCn (Pmax) recursively
to the remaining SNs by the same procedure described in
the next section. In a case, where the power PCn instead
of PRn > PCn will be regulated higher than Pmax, we can
reverse the roles of both transmission powers and repeat this
reallocation method until no more SNs are left which exceed
their power-limitation. Therefore, the described limitation of
the total transmission power is the generalized case which
includes the limitation of the transmission power of each SN.

Note that this procedure is applicable for individual power
constraints per node as well. Furthermore, note that in each
iteration more than one node can be discarded from the list
of unallocated SNs in order to decrease the computation
complexity.

B. Power allocation procedure

The suboptimal solution of the power allocation problem
has been described in [1] by the formulaes

PRn = Pnoise
g2(2dRn )
αR

n

4
(|rK |−|r1|)2 ·max

(
0, λ

βn
− 1
)

(4)

and
PCn = Pnoise

g2(dCn )
αC

n

K
K−1 ·max

(
0, λ

βn
− 1
)

(5)



for all n ∈ FN , where the factor βn is defined by

βn :=
g2(2dRn )
αR

n

4
(|rK |−|r1|)2 +

g2(dCn )
αC

n

K
K−1 . (6)

The derived allocation method is equivalent to the water-
filling power allocation procedure [13]. The results depend
on the water-filling level λ, which is a value specified by the
inequality

βÑ < λ ≤ 1
Ñ

[
Ptot
Pnoise

+

Ñ∑
n=1

βn

]
. (7)

In practice, the water-filling level is chosen as large as possible
in order to exploit the given total transmission power. For
the determination of the water-filling level as well as for the
choice of the number Ñ it is important to arrange the factors
βn in an increasing manner. The number Ñ with 1 ≤ Ñ ≤ N
is a suitably chosen integer value for which the inequality

Ñ∑
n=1

(βÑ − βn) <
Ptot
Pnoise

(8)

holds. By substitution of (4) in (5) we get the communication
power in terms of the sensing power, which is given as

PCn (PRn ) = PRn ·
αR

n

αC
n

g2(dCn )
g2(2dRn )

K
K−1

(|rK |−|r1|)2
4 , ∀n ∈ FN . (9)

This allocation has the following interpretation. The SN Sn
with the lowest βn gets the largest part of the total power be-
cause its communication channels are possibly the best due to
the low distances. Therefore, the observation of the target ob-
ject is less interfered by noise and consequently results in bet-
ter data communication. SNs with higher distances get smaller
parts of the total power and some of them do not get any power
at all. The last ones participate neither in the data communica-
tion nor in the classification of the target object. Their infor-
mation reliability is too poor to be considered for data fusion.
More and more SNs will become active by increasing the total
power. Then the overall classification probability increases
because more correct information is provided by the observa-
tions. Therefore, the classification probability strongly depends
on the number Ñ of active SNs. The wrong choice of the
number Ñ has a considerable impact on the results. In [1] we
have shown some promising results, where the number of ac-
tive SNs has been chosen as large as possible. In this paper, we
propose the allocation of the total power to a number of SNs
that is as low as possible. Hereby, we improve our old results
and we show a better classification performance in Section IV.

C. Computational effort

In order to calculate the transmission powers (4) and (5) the
computation of βn, λ, and Ñ is necessary. The parameters K,
N , Ptot, Pnoise, rk, αRn , and αCn are fixed system parameters
which are known to the computation unit. The distances dRn
and dCn depend on the position of the target object and are
therefore unknown. They can be estimated for example by
a tracking algorithm. If these values are also determined,
then the equations (4)–(9) can be calculated with little effort,
because of simple mathematical operations such as summation

and multiplication. The only difficulty is the evaluation of the
path loss function g, which can include complex mathematical
operations. Its complexity depends on the underlying multipath
channel.

However, the computation effort of the equations (4)–(9) is
less complex than the evaluation of the classification algorithm
such as the Bayesian-hypotheses test-criterion. If one can find
simpler classification algorithms (see, for example [14]), then
the assessment of the calculation effort becomes important and
it should be considered in detail. In generell, the computational
effort is strongly dependent on the number Ñ of active
SNs. Therefore, a reduction of the active SNs to a minimum
number helps in decreasing computational complexities and
is consequently very important. Hence, the above described
selection of the SNs is necessary to achieve this purpose.

IV. NUMERICAL RESULTS

In this section we present some simulation results obtained
by applying the proposed power optimization method from
Section III. We simulate target objects with equal probabilities
of occurrence πk = 1

K ∀k ∈ FK and corresponding reflection
coefficients chosen as |rk| = k−1

K−1 ∀k ∈ FK . Thereby, we
always use a sensor network of ten SNs, which has a total
power-limitation of Ptot as described in previous sections.
Furthermore, the path loss function is always modeled as
line-of-sight propagation. The ratio SNR = 10dB log

(
Ptot
Pnoise

)
,

instead of received SNRs, is depicted on the abscissa of all
figures. The probability of classification error is obtained by
averaging over all failed classifications for the occurrence of
the K different objects at each SNR value. In the first two
figures we allow the occurrence of three different types of
target objects. In contrast, the occurrence of more object types
is considered in the last figure.
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Fig. 2. Comparison of the proposed power allocation and a uniform power
allocation in a network without power-limitation of the sensor nodes.

In Fig. 2, we consider a network, where the SNs do not
have any power constraints. As shown, the proposed method
yields a better classification probability in comparison to a
uniform power allocation method. In particular, it is shown
that the same overall classification probability can be achieved



with much lower transmission power, especially for low SNR
values, by using an efficient power allocation method. The
larger the number of SNs is, the more important a smart power
allocation procedure becomes. Furthermore, the achievable
classification probability by using the method from [1] is also
shown. Using the minimum possible number of SNs leads the
proposed method to an improved classification accuracy in
comparison to the usage of the maximum possible number of
SNs for the classification process.
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Fig. 3. Comparison of proposed power allocation with and without power-
limited sensor nodes.

The comparison of a network without power-limitation of
the SNs to the same network with different power constraints
per SN is shown in Fig. 3. The limitation Pmax < Ptot of
the transmission powers reduces the overall classification
performance as expected. The lower the power-limitation Pmax
is, the worse the classification probabilities are.
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Fig. 4. Comparison of different number of object types.

In Fig. 4, we consider again a network without power
constraints per SNs, but with different number of object
types. The different number of object types are chosen as
K ∈ {3, 4, 5, 6}. As expected, the overall classification proba-
bility decreases quickly by increasing the number of different

object types. There are three reasons for this deterioration that
rises by increasing the number of different object types. First,
the reflection coefficients are artificially placed closer to each
other. Second, the probability of occurrence is smaller for each
of the target objects. Third, the number of possibilities is larger
in misclassifying the target object.

V. CONCLUSION

The goal of the power allocation is to maximize the clas-
sification probability in a distributed wireless sensor network,
which is based on ultra-wide bandwidth communication tech-
nology. A two-stage decision process is used for the object
classification procedure, which has been initially proposed
in [1]. We have shown that the proposed allocation proce-
dure works in networks with and without consideration of
the transmission-power limitation per sensor node. Numerical
results illustrate the performance of the described extension
as well as the achieved classification probability. Furthermore,
the new approach for sensor node selection improves the
former results. This selection method allows us to decrease the
number of active sensor nodes. It subsequently increases the
classification performance while the computation complexity
is decreased simultaneously.
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