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Abstract— In this paper, we consider one-bit output quantiza-
tion of a discrete signal with m real signaling points subject to
arbitrary additive noise. First, the capacity-achieving distribution
is determined for the corresponding channel. For any fixed
quantization threshold q it concentrates on the two most distant
signaling points, hence leading to an interpretation as binary
asymmetric channel. The direct proof of this result allows for
an explicit form of the capacity as a function of threshold
q. We characterize stationary points as candidates for optimal
thresholds by a condition on the differential quotient of the
derivative of the binary entropy function. In contrast to intuition,
symmetry of the noise distribution does not ensure a unique
optimum antipodal threshold.

I. INTRODUCTION AND MOTIVATION

Modern digital receivers use analog-to-digital converters
(ADC) of rather high precision, normally 8 to 12 bits. In-
creasing bandwidth of such systems requires sampling at ex-
tremely high speed, which is computationally demanding and
energy costly. A drastic reduction of quantization depth to low
precision one-bit quantizers allows for designing high-speed
systems at tolerable energy consumption. Before rethinking the
design of digital systems into this direction the fundamental
limits of low precision ADC must be understood.

This paper aims at contributing to this objective. The
question we ask is quite basic. Firstly, what is the capacity-
achieving distribution for an additive noise channel with a one-
bit output quantizer in the class of discrete input distributions
with m support or signaling points. Discrete channel input is
quite natural from a practical point of view, since for digital
transmission systems usually finite sets of signalling points are
used. Moreover, in [1] it is stated that the capacity-achieving
distribution over all input distributions is discrete, once an
average power constraint applies. In the work [2], the real,
discrete-time additive white Gaussian noise (AWGN) channel
with an average power constraint is considered. The authors
show that for a K-bit quantizer with a precision of log2K
bits the capacity-achieving input distribution is discrete with
at most K+1 mass points. For binary symmetric quantization
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this result is refined to demonstrating that antipodal signaling
is optimum for arbitrary signal-to-noise ratios. The authors
conjecture that symmetric quantizers are optimal, however,
are not able to provide a proof. Moreover, the loss by low
precision ADCs is numerically quantified.

One-bit quantization is also considered in [1], [3] for the
same channel model. In the low signal-to-noise regime, as
is relevant for spread-spectrum and ultra-wideband commu-
nications, it is shown that asymmetric signal constellations
combined with asymmetric quantization are superior to the
fully symmetric case. It is shown that with such asymmetric
threshold quantizers the capacity per unit-energy of the Gaus-
sian channel without output quantization is achieved. However,
for this purpose flash-signaling input distributions are required,
which are not within the class of peak power constrained input
distributions as they will be considered in the present work.

In the recent paper [3], the work [1] is extended to including
a peak power constraint. This leads to the result that the
capacity-achieving input distribution is concentrated on two
extreme mass points, cf. [3, Prop. 1]. Capacity is written as
a maximization problem over all possible thresholds, but only
numerical indications are given that the optimum threshold is
0. Moreover, for the Gaussian channel it is shown in [3] that
a threshold quantizer is optimal.

In the work [4] one-bit quantization is interpreted as an
asymmetric channel. Channel capacity and minimal error
probability are investigated in parallel, and optimal threshold
settings are determined numerically.

In [5] the closely related problem of optimal one-bit source
quantization is studied. It is shown that for symmetric and
log-concave source distributions the optimal one-bit quantizer
is symmetric about the origin.

In the recent paper [6], for a complex-valued fading chan-
nel the ergodic capacity and outage probability of one-bit
output quantization for discrete I/Q modulation schemes is
determined.

In this paper, we consider a real input channel with a
finite number of signalling points, arbitrary additive noise
and one-bit quantization. What discriminates this work from
others, particularly [3], are the following contributions. We
give a direct proof of the fact that the capacity-achieving input
concentrates on the extreme signaling points only. This proof,
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together with the concept of conjugate functions, leads to an
explicit representation of the capacity as a function of thresh-
old q. This is illustrated by the intuitive graphical approach in
Fig. 3. We also consider arbitrary noise distributions, which
allows for the interesting example that symmetry only does
not ensure a unique optimal threshold under the capacity-
achieving distribution. We furthermore characterize stationary
points as candidates for optimal thresholds by a condition on
the differential quotient of the derivative of the binary entropy
function, see (26).

II. CHANNEL MODEL

We assume an additive noise channel. Real input X with cu-
mulative distribution function (cdf) F (x) is subject to additive
noise W with density function ϕ(w) and corresponding cdf
Φ(w). X and W are assumed to be stochastically independent.
The noisy signal X+W is then quantized by a binary quantizer
Q with threshold q as Q(s) = 1, if s ≥ q and Q(s) = 0,
otherwise. The system model is depicted in Fig. 1 and reads
as

Y = Q(X +W ). (1)

The conditional distribution of Y , given X = x is

g0|x = P (Y = 0 | X = x) = Φ(q − x)

g1|x = P (Y = 1 | X = x) = 1− g0|x
(2)

and the distribution of Y may be written as

g0 = P (Y = 0) =

∫ ∞
−∞

Φ(q − x)dF (x)

g1 = P (Y = 1) = 1− g0.

(3)

Let h(p) denote the binary entropy function

h(p) = −p log p− (1− p) log(1− p), 0 ≤ p ≤ 1. (4)

It is well known that h(p) is a strictly concave function of
p ∈ [0, 1].

Mutual information between input X and binary output Y
may be written as

I(X;Y ) = H(Y )−H(Y | X)

= h
(∫ ∞
−∞

Φ(q − x)dF (x)
)
−
∫ ∞
−∞

h
(
Φ(q − x)

)
dF (x)

= h(g0)−
∫ ∞
−∞

h(g0|x)dF (x)

=

∫ ∞
−∞

D
(
(g0|x, g1|x)‖(g0, g1)

)
dF (x), (5)

where D denotes the Kullback-Leibler divergence.
Mutual information is hence a function of the input distri-

bution F and the quantization threshold q. This motivates the
notation I(X;Y ) = I(F ; q). In the case that F corresponds to
a discrete distribution with discrete density p = (p1, . . . , pm)
we also write I(p; q). It is well known that I(F ; q) is a
concave function of F .

+
X

W

q Y {0, 1}

Fig. 1. The system model: some real input X is subject to additive noise
W and is quantized with threshold q to yield binary output Y .

III. CAPACITY-ACHIEVING INPUT DISTRIBUTION

In the following we assume that the input distribution is
discrete with m probability mass points x1, . . . , xm ∈ R in
decreasing order x1 > x2 > · · · > xm. Besides practical
requirements on the signaling space also theoretical results
imply that the input distribution should be discrete. For the
special case of (1) with Gaussian noise it is shown in [2] that
the capacity-achieving distribution is discrete if an average
power constraint applies. In [3], Theorem 1 states that the
capacity-achieving distribution for channel model (1) subject
to an average power constraint has at most three mass points.

Also for channels without quantization discrete distribu-
tions are capacity-achieving in certain cases. Additive Gaus-
sian noise channels, but also others like Poissonian, quadra-
ture Gaussian and additive vector Gaussian, have a discrete
capacity-achieving input distribution if the input is subject
to peak power and average power constraints. This was first
shown by [7] for additive Gaussian channels and is extended
in [8] to conditionally Gaussian channels.

We assume that the input X with support x1 > x2 > · · · >
xm is governed by a discrete distribution with probabilities
p = (p1, . . . , pm). Let D denote the set of stochastic vectors
of length m, i.e.,

D =
{
p = (p1, . . . , pm) | pi ≥ 0,

∑m
i=1 pi = 1

}
.

For a fixed quantization threshold q we search for the capacity-
achieving distribution p∗, the one which maximizes mutual
information I(X;Y ) = I(p, q) over all p ∈ D.

From (3) it is clear that the channel may be represented
as a discrete memoryless channel with m input symbols and
binary output. The m× 2 channel matrix has the form

V =

Φ(q − x1) 1− Φ(q − x1)
...

...
Φ(q − xm) 1− Φ(q − xm)


=

 γ1 1− γ1

...
...

γm 1− γm

 =

v1

...
vm

 (6)

with γi = Φ(q − xi) and m rows v1, . . . ,vm of length two.

Proposition 1: For any quantization threshold q ∈ R the
capacity-achieving distribution p∗ of channel model (1) is
concentrated on the extreme signaling points x1 and xm. It
holds that

p∗1 =
z − γm
γ1 − γm

, p∗m =
γ1 − z
γ1 − γm

, (7)
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Fig. 2. The binary entropy function h and the tangent line at the point z.

where

z =
1

1 + ed
and d =

h(γ1)− h(γ2)

γ1 − γ2
. (8)

Proof. From [9], see also [10], Th. 4.5.1, we conclude that p∗

is capacity-achieving if and only if D(vi‖p∗V ) = ζ for some
ζ > 0 and all i with p∗i > 0, and furthermore, D(vj‖p∗V ) ≤
ζ for all j with p∗j = 0.

Now, for any p let z =
∑m
j=1 pjγj = g0 denote the

probability of output 0. We use the representation

D(vi‖p∗V ) = D
(
(γi, 1− γi)‖(z, 1− z)

)
= γi log

γi
z

+ (1− γi) log
1− γi
1− z

= −h(γi)− γi log
z

1− z − log(1− z)
= −h(γi) + γih

′(z)− log(1− z)

(9)

since h′(z) = log 1−z
z , z ∈ {0, 1}, where ·′ denotes the

derivative.
Now assume that

D(vi‖p∗V ) = D(vj‖p∗V ) (10)

for some p with pi > 0, pj > 0. Then from (9)

h(γi)− γih′(z) = h(γj)− γjh′(z) (11)

which entails that
h(γi)− h(γj)

γi − γj
= h′(z). (12)

h′(z) denotes the derivative of h. Hence, z = P (Y = 0)
must be chosen in such a way that the slope of the tangent
line of the binary entropy function h at the point z equals the
differential quotient through the point h(γi) and h(γj). This
condition is depicted in Fig. 2.

Since γ1 < · · · < γm, there cannot be three points such that
the slope of the tangent line at z equals the differential quotient
between each pair. Hence, there are exactly two elements
in {x1, . . . , xm} with positive probability, all others carry
probability mass zero.

For each pair of points γi < γj the corresponding zi,j ∈
(γi, γj) is determined by (12) giving an input distribution
p(i,j) with all components zero except of the ith and jth. The
Kullback-Leibler divergence reads as

D(vj‖p(i,j)V ) = −h(γj) + γjh
′(zi,j)− log(1− zi,j)

= u(zi,j), say.
(13)

The final step of the proof consists of showing that the
pair of extreme points x1 and xm maximizes (13). For this
purpose we consider the Kullback-Leibler divergence u(z) as
a function of z with γj fixed. Since h′′(z) = − 1

1−z − 1
z ,

0 < z < 1, the derivative is obtained as

u′(z) = γjh
′′(z) +

1

1− z
= − γj

1− z −
γj
z

+
1

1− z
=

1− γj
1− z −

γj
z
< 0,

(14)

since z < γj and thus 1− z > 1− γj .
Hence, if z`,j < zi,j , as is the case if γ` < γi, then

D(v`‖p(`,j)V )

= −h(γj) + γjh
′(z`,j)− log(1− z`,j)

> −h(γj) + γjh
′(zi,j)− log(1− zi,j)

= D(vj‖p(i,j)V ).

(15)

Analogously, moving from any point γj to the extreme point
γm increases the corresponding Kullback-Leibler divergence.

Since Φ is strictly increasing, the extreme signaling points
xm and x1 are identified as the ones to be exclusively used
for maximizing mutual information I(X;Y ). The correspond-
ing capacity-achieving distribution may be computed from
h′(z1,m) = log

(
(1−z1,m)/z1,m

)
= d, such that z1,m = 1

1+ed
.

Since z1,m = p1γ1+pmγm the capacity-achieving distribution
has the form stated in Prop. 1. This completes the proof.

The result of Proposition 1 holds for any channel matrix of
the form (6), provided that γ1 < · · · < γm. The capacity-
achieving distribution of the asymmetric binary channel is
obtained as a special case, cp. [4], [9].

So far we have solved the problem

max
p∈D

I(p; q)

when the quantization threshold q is fixed.

IV. OPTIMUM QUANTIZATION THRESHOLD FOR THE
CAPACITY-ACHIEVING INPUT

In the previous section we have shown that the capacity-
achieving distribution has only two support points, namely
x1 and xm, generating γk = Φ(q − xk), k = 1,m. The
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Fig. 3. The binary entropy function h, the tangent line at z and relations to
entropy and mutual information.

corresponding z = P (Y = 0) is implicitly defined by equation
(12).

We now aim at characterizing the optimum threshold q∗.
For notational convenience the argument q is suppressed in
γ1 and γm, however, both γi(q) = Φ(q − xi), i = 1,m, are
complicated functions of q ∈ (−∞,∞).

We start from the equation I(X;Y ) = H(Y )−H(Y | X)
and observe that

H(Y ) = h(z),

H(Y | X) = h(γ1) + (z − γ1)h′(z),

= h(γm) + (z − γm)h′(z),

(16)

where z is implicitly defined by h′(z) = h(γ1)−h(γm)
γ1−γm . This

implies that

I(X;Y ) = h(z)− h(γ1)− (z − γ1)h′(z)

= h(z)− h(γm)− (z − γm)h′(z).
(17)

The substance of formula (17) is visualized in Fig. 3.
From (17) we derive the representation

I(X;Y )

= sup
x∈[0,1]

{
h(x)− h(γ1)− h(γm)− h(γ1)

γm − γ1
(x− γ1)

}
= sup
x∈[0,1]

{
h(x)− x d(γ1, γm)

}
+ γ1 d(γ1, γm)− h(γ1),

(18)

where d(γ1, γm) = h(γm)−h(γ1)
γm−γ1 denotes the differential quo-

tient of h at γ1 and γm.
We use the fact that the conjugate function of the negative

binary entropy −h(x) = x log x+ (1− x) log(1− x) is given
by

(−h)∗(y) = sup
x

{
yx+ h(x)

}
= log(1 + ey) (19)

cf. [11], Chap. 3.3, to obtain the representation

I(X;Y )

= (−h)∗
(
− d(γ1, γm)

)
+ γ1 d(γ1, γm)− h(γ1)

= log
(
1 + e−d(γ1,γm)

)
+ γ1 d(γ1, γm)− h(γ1). (20)

Analogously it holds that

I(X;Y )

= log
(
1 + e−d(γ1,γm)

)
+ γm d(γ1, γm)− h(γm). (21)

We continue with representation (20) to investigate maxi-
mum points of the mutual information

I(X;Y ) = log
(
1+e−d(γ1,γm)

)
+γ1 d(γ1, γm)−h(γ1) (22)

as a function of q. As a real function of the argument q ∈ R
points of derivative zero are candidates for generating extrema.
Recall that ·′ denotes the derivative.

Since
∂d(γ1, γm)

∂q
= (23)

1

γ1 − γm
(
h′(γ1)γ′1 − h′(γm)γ′m − (γ′1 − γ′m) d(γ1, γm)

)
,

the derivative ∂I(X;Y )
∂q of (22) equals zero if and only if

(
h′(γ1)− d

)
γ′1
(
γm −

e−d

1 + e−d
)

=
(
h′(γm)− d

)
γ′m
(
γ1 −

e−d

1 + e−d
)
,

(24)

as is obtained after some algebra. Using the fact that z and d
correspond via, see (12)

h′(z) = log
1− z
z

= d

h′−1(d) =
e−d

1 + e−d
= z

(25)

the condition for stationarity finally reads as

h′(γ1)− h′(z)
γ1 − z

γ′1 =
h′(γm)− h′(z)

γm − z
γ′m. (26)

Equation (26) balances the differential quotients of h′ at γ1

and z, and γm and z, respectively, against the slope of γ1 and
γm. Although condition (26) looks rather symmetric it is hard
to evaluate explicitly.

In general, the optimum threshold is not unique as the
following example demonstrates. Let N (µ, σ2) denote the
distribution function of the Gaussian with expectation µ and
variance σ2. The signalling points are set to x1 = 1 and
xm = −1. The noise distribution Φ is formed as

Φ =
1

2
N (−µ, 1) +

1

2
N (µ, 1). (27)

for µ = 2, 1.25, 0 The corresponding channel capacity is
shown as a function of threshold q in Fig. 4. Except of the
case µ = 0 there are two optimum quantization thresholds.
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Fig. 4. The capacity of the binary quantization channel as a function of
threshold q with signalling points x1 = 1, xm = −1 and a mixture of
Gaussians from (27) as noise distribution. Solid line: µ = 2, dashed: µ =
1.25, dash-dotted: µ = 0.

V. SYMMETRY OF MUTUAL INFORMATION

If Φ is symmetric with density ϕ(x) = ϕ(−x), as is the
case for Gaussian noise, the following identities are derived
for q∗ = (x1 + xm)/2. The notation ’superscript star’ refers
to values attained at argument q∗.

γ∗1 = 1− γ∗m, d∗ = 0, z∗ = 1/2, h′(z∗) = 0,

h′(γ∗1 ) = −h′(γ∗m), γ′1
∗

= γ′m
∗

It follows that condition (26) is satisfied such that in case
of symmetry q∗ = (x1 + xm)/2 forms a stationary point and
is a clear candidate for the optimum threshold.

In the sequel the dependence of I(X;Y ) on the threshold
q is emphasized by the notation I(X;Y )(q), and correspond-
ingly by writing γi(q), i = 1,m. We will demonstrate that
I(X;Y )(q) is symmetric whenever the noise distribution is.
For this purpose let

x̄ = (x1 + xm)/2 (28)

and assume that Φ(−x) = 1 − Φ(x) for all x ∈ R, as is the
case, e.g., for Gaussian noise. Symmetry is understood as

I(X;Y )(x̄+ q) = I(X;Y )(x̄− q) (29)

for all q ∈ R.
We start from the following set of equations

γ1(x̄+ q) = Φ
(
q − x1 − xm

2

)
= 1− γm(x̄− q)

γ1(x̄− q) = Φ
(
− q − x1 − xm

2

)
= 1− γm(x̄+ q)

γm(x̄+ q) = Φ
(
q +

x1 − xm
2

)
= 1− γ1(x̄− q)

γm(x̄− q) = Φ
(
− q +

x1 − xm
2

)
= 1− γ1(x̄+ q)

(30)

for all q ∈ R, and further

h
(
Φ(x)

)
= h

(
1− Φ(x)

)
= h

(
Φ(−x)

)
(31)

for all x ∈ R. To emphasize dependence on q we denote the
differential quotient as

d(q) =
h(γm(q))− h(γ1(q))

γm(q)− γ1(q)
. (32)

It is easy to see that

d(x̄+ q) = −d(x̄− q) (33)

and
h(γ1(x̄+ q)) = h(γm(x̄− q)). (34)

These equations together with (20) and (21) yield

I(X;Y )(x̄+ q)

= log
(
1 + e−d(x̄+q)

)
+ γ1(x̄+ q) d(x̄+ q)

− h(γ1(x̄+ q))

= log
(
1 + ed(x̄−q))− (1− γm(x̄− q)) d(x̄− q)

− h(γm(x̄− q))
= log

(
1 + ed(x̄−q))+ γm(x̄− q) d(x̄− q)− d(x̄− q)

− h(γm(x̄− q))
= log

(
1 + e−d(x̄−q))+ γm(x̄− q) d(x̄− q)

− h(γm(x̄− q))
= I(X;Y )(x̄− q)

(35)

which proves (29).
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