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Abstract—Various system tasks like interference coordination,
handover decisions, admission control etc. in upcoming cellular
networks require precise mid-term (spanning over a few seconds)
performance models. Due to channel-dependent scheduling at the
base station, these performance models are not simple to obtain.
Furthermore, upcoming cellular systems will be interference-
limited, hence, the way interference is modeled is crucial for
the accuracy. In this paper we present an analytical model for
the SINR distribution of the scheduled subcarriers of an OFDMA
system with proportional fair scheduling. The model takes the
precise SINR distribution into account. We furthermore refine
our model with respect to uniform modulation and coding, as
applied in LTE networks. The derived models are validated by
means of simulations. In additon, we show that our models
are approximate estimators for the performance of rate-based
proportional fair scheduling, while they outperform some simpler
prediction models from related work significantly.

I. INTRODUCTION

Cellular networks are facing a considerable increase in
mobile data traffic over the next ten years [1]. The current
traffic impact generated from smartphones is to some extent
evidence for the development still ahead. To satisfy these
demands, ambitious requirements are set for the upcoming
4th generation of cellular networks like IEEE 802.16 [2]
and 3GPP’s LTE (long term evolution) [3]. The demand of
higher capacity on the one hand and the presence of scarce
frequency resources on the other, poses challenging aspects
on their system design. Frequency reuse of one is applied
for a flexible usage of the resource allocation especially for
asymmetrical load distributions. Additionally, feedback based
resource allocation schemes (scheduling) are introduced for an
efficient exploitation of the available resources.

The scheduling algorithm running in the base station for
the downlink can quickly adapt to fading channel conditions
thanks to the feedback of the channel states sent from the mo-
bile stations. Opportunistic schedulers [4] assign the resources
to the mobile terminals having the best channel conditions by
taking advantage of multi-user diversity. Although it delivers
the best overall system throughput, terminals with bad channel
conditions over an extended period of time experience signif-
icant QoS degradation as they are less likely to be scheduled
at all. In order to resolve this problem, proportional fair
scheduling (PFS) has been proposed. For this the instantaneous
channel states (either characterized by the rate or by the signal-
to-interference-and-noise ratio) are scaled by dividing with
the average channel state. Based on this modified channel

characterization, the scheduler opportunistically assigns the
resources. Therefore, the resources end up with the terminals
that have the relatively best channel states in comparison to
their average state. Due to the characteristic of PFS to support
terminals more evenly, it is widely accepted and used as
reference scheduler in many other investigations [5], [6], [7].

Despite the beneficial characteristics of PFS, it obviously
makes system analysis tougher. This is due to the fact that
the PFS algorithm ’transforms’ the stochastic properties of
the resources assigned [8]. For instance, assuming the channel
states to be exponentially distributed (which is a standard
model for the signal-to-noise ratio), the resulting distribution
of the channel states of the assigned resources are clearly
modified in a beneficial way. However, the exact impact is
hard to derive while for system tasks like admission control,
handover, interference coordination and load balancing a pre-
cise model is clearly of interest. This has lead to multiple
attempts to describe the impact of PFS analytically. For
instance, in [9] the authors derive upper and lower bounds
for the spectral efficiency of PFS in noise-limited cases. The
work was extended in [10] to interference-limited systems.
Nevertheless, these works were not able to provide an exact
analytical expression. Further attempts have been made in [11],
[12], [13], [14], [15]. However, all these works relied on the as-
sumption that the instantaneous scheduled rates are Gaussian-
distributed under PFS. While this assumption might hold for
noise-limited systems, it clearly does not for interference-
limited ones. Hence, these analytical models can not be applied
if dealing with interference-limited scenarios. Nevertheless,
these scenarios are the most interesting in upcoming fourth
generation systems, as due to the frequency reuse of one, the
systems are mostly interference-limited.

In this work, we concentrate on an exact analytical
model of PFS specifically considering interference-limited
OFDMA/LTE systems. We first derive the distribution of the
transformed SINR channel states when PFS resource alloca-
tion is performed. This basic expression takes perfect channel
state information at the base station into account and considers
also a flexible allocation of modulation and coding schemes
to resources. After validating our analysis, we then turn to
additionally modeling impairments that arise in LTE systems.
Namely, the channel state feedback is delayed and quantized
while modulation and coding is applied uniformly over all
resources assigned to a terminal during one slot. We show



that our novel model is quite exact even when limited channel-
feedback and fixed modulation/coding schemes are considered.
Moreover, we show that all other presented analytical models
lead for the interference-limited case to much bigger errors in
performance prediction. This is important as any control al-
gorithm (handover, load balancing, interference coordination)
implemented on top will lead to poor performance due to the
estimation error in the PFS performance model. To the best
of our knowledge, our model is novel with respect to related
work.

Our remaining work is structured in the following way.
In Section II we introduce the system model and define the
problem that we are interested in. Section III presents the
major analysis of our work while some refinements for LTE
are presented in Section IV. We finally compare our prediction
model with some other ones from related work in Section V
before we conclude the paper in Section VI.

II. BASIC SYSTEM MODEL

Initially, we consider the down-link of a cellular (LTE-like)
OFDMA system. Time is split up into transmission slots with
index t. The slots are also referred to as Transmission Time
Intervals (TTI) in the LTE context. They have a duration
of TTTI seconds. Orthogonal frequency division multiplexing
(OFDM) is the basic transmission scheme. Hence, the system
bandwidth B is split into many subcarriers out of which
R adjacent ones are always bundled together for resource
allocation. We refer to these bundles as resource blocks (RBs)
and assume that there are N such resource blocks in the
system. A resource block is the smallest frequency unit for
resource allocation at the base station. Furthermore, per slot
(i.e., per TTI) each subcarrier can convey S symbols to some
receiver. Therefore, a resource block carries R · S resource
elements in total. In the following we focus on a particular cell
of a cellular deployment. There are J terminals (also referred
to as user equipment - UE - in LTE) currently in this cell
and we denote the set of these terminals by J . Each of these
terminals is also subject to interfering down-link signals from
the neighboring cells.

The communication in each cell is centrally controlled by
the base station (also referred to as eNB). Per TTI the base
station assigns different resource blocks to different terminals
depending on the channel states of the terminals as well as
the currently backlogged data. The down-link channel state
for terminal j on resource block n at slot t is given by the
signal-to-interference-and-noise ratio (SINR) γj,n (t) defined
as:

γj,n (t) =
psng

s
j,n(t)

ping
i
j,n(t) + η

. (1)

Here, psn and pin are the transmission powers for the signal of
interest and of the interfering signal. Note that these can take
arbitrary values. We consider in the following one dominant
interfering signal for each terminal. Furthermore, gsj,n(t) and
gij,n(t) denote the instantaneous channel gains for the signal
of interest and for the interfering signal. Finally, η denotes the
noise power.

Given the SINR on resource block n, we denote by C (γj,n)
the spectral efficiency of the modulation and coding scheme
used to transmit resource block n regarding terminal j.
Example functions can be found in [16], [17], alternatively
the Shannon formula log2 (1 + γ) is often used for this as
theoretical upper bound. Note that we initially assume C
to be independent from any other resource block, i.e., the
modulation and coding type for n can be chosen independent
of the other resource blocks. We will refine this assumption
later in Section IV.

The considered resource allocation scheme is the propor-
tional fair scheduling (PFS) algorithm. Given the SINR values
γj,n the scheduler operates as follows. Let:

γ̄j,n (t) =
1

W

t∑
i=t−W

γj,n (i) (2)

express the average SINR during the last W time slots on
resource block n for UE j. W is also known as the time
window of proportional fair scheduling. Then γ̂j,n(t) denotes
the scaled, instantaneous SINR defined as:

γ̂j,n(t) =
γj,n(t)

γ̄j,n(t)
. (3)

The PFS algorithm allocates resource block n to terminal j∗

in case it has the best scaled SINR among the other users. In
other words, every TTI the following allocations are done:

∀n : j∗n (t) = arg max
j∈J

γ̂j,n(t) . (4)

In order to perform this algorithm, the scheduler requires the
channel states γj,n. We initially assume that this information
is accurately provided by the system. Later on in Section IV,
we will also consider consequences from the implementation
of the feedback channel in LTE systems.

We will concentrate in this work on formulating a math-
ematical model which describes the impact of PFS on the
distribution of the SINR of the scheduled resource blocks for
some terminal. From this we can easily derive for instance
the average SINR or the average obtained rate per terminal
per cell. Once obtaining these characterization for an ideal
OFDMA system with perfect channel state information, we
will also consider the impact due to uniform modulation and
coding schemes as well as due to quantized feedback as they
are implemented in LTE networks.

III. BASIC ANALYSIS OF PFS IN INTERFERENCE-LIMITED
SCENARIOS

The temporary channel gains gj,n of the signal of interest as
well as of the interfering signal are modeled as exponentially
distributed random variables (RV) according to a Rayleigh
fading model. We assume the average channel gains gj,n to
be stationary for some longer duration. Typically, this is the
case for a few hundred milliseconds up to seconds. Then the
SINR γj,n(t) on resource block n for terminal j is a random



variable denoted by Xj,n. The corresponding density function
fXj,n

(x) of the SINR is well known to be [18]:

fXj,n (x) =

[
η

P ij,n · xj,n + P sj,n
+

P sj,n · P ij,n
(P ij,n · x+ P sj,n)2

]

· exp

(
− η

P sj,n
x

)
, (5)

with the corresponding cumulative distribution function:

FXj,n (x) = 1−
P sj,n

(P ij,n · x+ P sj,n)
· exp

(
− η

P sj,n
x

)
(6)

where P sj,n = psng
s
j,n, P

i
j,n = ping

i
j,n are the average received

powers of the signal of interest and of the interfering signal.
For an infinite window size W we have:

γ̄j,n = lim
W→∞

(
1

W

t∑
i=t−W

γj,n(i)

)
= E[Xj,n]

=

∫ ∞
0

x · fXj,n (x) dx

=

∫ +∞

0

x ·

[
η

P ij,n · x+ P sj,n
+

P sj,n · P ij,n(
P ij,n · x+ P sj,n

)
]

· exp

(
− η

P sj,n
· x

)
dx

=

[
P sj,n
P ij,n

(
exp

(
η

P ij,n

)
Ei

(
− ηx

P sj,n
− η

P ij,n

))

−
P sj,nx exp

(
ηx
P s

j,n

)
P ij,nx+ P sj,n

]∞
0

.

Since

lim
x→∞

P sj,nx exp
(
ηx
P s

j,n

)
P ij,nx+ P sj,n

= 0,

lim
x→0

P sj,nx exp
(
ηx
P s

j,n

)
P ij,nx+ P sj,n

= 0,

and

lim
x→∞

Ei

(
− ηx

P sj,n
− η

P ij,n

)
= 0,

it follows:

γ̄j,n = −
P sj,n
P ij,n

exp

(
η

P ij,n

)
Ei

(
− η

P ij,n

)

=
P sj,n
P ij,n

exp

(
η

P ij,n

)
E1

(
η

P ij,n

)
. (7)

Therein Ei(x) =
∫ x
−∞

exp(t)
t dt denotes the exponential

integral and Ei(x) = −E1(−x). Equation (7) is also referred

to as static SINR estimation in case RB n is persistently
assigned to UE j [19]. Then, following rules of random
variable transformation [20] the distribution function FX̂j,n

(x)

and the PDF fX̂j,n
(x) of the random variable X̂j,n =

Xj,n

E[Xj,n]

representing the scaled SINR can be calculated:

FX̂j,n
(x) = FXj,n(E[Xj,n] · x) (8)

fX̂j,n
(x) = E[Xj,n] · fXj,n

(E[Xj,n] · x) (9)

Let us define the scheduling indicator Mj,n as a new
binary random variable which will help in analyzing the PF
scheduler. It is one whenever terminal j is scheduled on the
resource block n. This happens when it has the highest scaled
SINR X̂j,n on RB n among all other terminals. Likewise,
the indicator is zero if terminal j is not scheduled. Given the
scheduling indicator Mj,n, we can now denote the density
function of the random SINR in case that this resource block
is scheduled for terminal j as fXj,n|Mj,n=1(x). Assuming we
have an expression for this density, the expected rate Rj,n on
resource block n for terminal j can be obtained as:

Rj,n =
R · S
TTTI

∫ ∞
0

C(x) · fXj,n|Mj,n=1(x) dx

·P (Mj,n = 1) . (10)

P (Mj,n = 1) is the probability that terminal j will be sched-
uled on RB n. Finally, the total rate per terminal is simply
given by the sum of the expected rates per resource block:

Rj =

N∑
n=1

Rj,n. (11)

A. Calculation of Scheduled SINR PDF

To obtain the average rate, we need to derive the conditional
density function fXj,n|Mj,n=1(x). From Bayes’ theorem we
have:

fXj,n|Mj,n=1(x) =
fMj,n=1|Xj,n

(x) · fXj,n
(x)

P(Mj,n = 1)
(12)

Then, assuming the scaled SINR random variables X̂j,n to be
independent among the terminals j and denoting the maximum
order statistics among them by X̂max

∀i6=j∈J with distribution
function FX̂max

∀i6=j∈J
(x), it follows:

P(M j,n = 1) = P (X̂j,n ≥ max
∀i 6=j∈J

(X̂i,n))

=

∫ ∞
0

fX̂j,n
(z)

∫ z

0

fX̂max
∀i6=j∈J

(y) dy dz

=

∫ ∞
0

fX̂j,n
(z) · FX̂max

∀i6=j∈J
(z) dz

=

∫ ∞
0

fX̂j,n
(z) ·

∏
∀i6=j∈J

FX̂i,n
(z) dz

=

∫ ∞
0

fX̂j,n
(z) ·

∏
∀i 6=j∈J

FXi,n
(E[Xi,n] · z) dz (13)

The only unknown term left for the transformed PDF calcu-
lation is the term fMj,n=1|Xj,n

(x). It can be simplified by



rewriting it to a function containing the best-order statistics
CDF:

fMj,n=1|Xj,n
(x) = P(Mj,n = 1|Xj,n = x)

= P
(
X̂j,n ≥ max

∀i 6=j∈J
(X̂i,n)|Xj,n = x

)
= P

(
Xj,n

E[Xj,n]
≥ max
∀i 6=j∈J

(X̂i,n)|Xj,n = x

)
= P

(
x

E[Xj,n]
≥ max
∀i 6=j∈J

(X̂i,n)

)
= FX̂max

∀i6=j∈J ,n

(
x

E[Xj,n]

)
=

∏
∀i6=j∈J

FX̂i,n

(
x

E[Xj,n]

)
=

∏
∀i6=j∈J

FXi,n

(
E[Xi,n]

E[Xj,n]
· x
)

(14)

Summing up the above, the probability density function of the
scheduled SINR can be expressed as:

fXj,n|Mj,n=1(x) =∏
∀i 6=j∈J FXi,n

(
E[Xi,n]
E[Xj,n]

· x
)
· fXj,n

(x)∫∞
0
fX̂j,n

(z) ·
∏
∀i 6=j∈J FXi,n

(E[Xi,n] · z) dz
(15)

By replacing E[Xj,n] = 1 in the last formula, the PDF
transformation of opportunistic scheduling can be obtained as
well. In opportunistic scheduling the history of the channel
states (see Formula 3) is not considered for the RB assignment
decisions. However, opportunistic scheduling is out of scope
in this work and we concentrate further on PFS. Unfortunately,
it is difficult to obtain a closed form solution of the integral in
the denominator of fXj,n|Mj,n=1(x). Nevertheless, numerical
methods can be used and relatively precise results can be
obtained. The calculation of the P(Mj,n = 1), being the
denominator in the last formula is a novelty compared to
related work in [12], [13]. It gives a clear statement on the
assignment probability of a MS to a RB, unlike [21] assuming
each user has the same channel access probability. This will be
used again later on in the analysis of practical system aspects.

B. Model Validation

In order to validate the theoretical model developed so far,
we compare the derived rates with empirical results from
system level simulations. We consider a simplified set up
where 20 terminals are distributed along a line as shown
in Figure 1. The serving base station is to the left. The
considered carrier frequency is set to 2 GHz and the system
has a bandwidth of 5 MHz. Accordingly, we set the number of
resource blocks to N = 25 with R = 7 symbols per resource
block each composed of S = 12 subcarriers. There is one
interfering base station situated 500 m from the serving one
(to the right in the figure). A standard path loss model from
3GPP is used (urban scenario) with 35.2 + 35 log10(d) for the
calculation of the average channel gains ḡsj,n, ḡij,n (where d

is the distance between terminals and base station in meters).
Meanwhile, for the fast fading simulation the Jake’s model is
assumed. The total transmission power is 20 W (0.8 W per
RB), the noise power per resource block is set to −112 dBm.
The simulated time equals 5 seconds. The window size for the
PFS is set to 100. For the link to system mapping the SINR
to spectral efficiency function C(x) from [17] was used and
a full buffer traffic model was simulated.

Figure 2 shows the SINR PDF transformation of the
basic SINR distribution fXj,n(x) to the scheduled SINR
fXj,n|Mj,n=1(x) for one RB of one the MSs. As it can be
noticed there is a very good match between the observed SINR
distributions from simulations and the models presented in
Formulas 5 and 15. The simulations were repeated 30 times
for different seeds of the fading process and the average rates
per terminal compared with the model from Formula 11 are
shown in Figure 3. Again, the comparison between simulations
and the models presented in Formula 11 shows a good match.
The small discrepancy noticed for the terminals 1-7 comes
due to the finite size of the PFS window W , which in our
theoretical model was assumed to be of infinite size.
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Fig. 1. MS location for model validation
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Fig. 2. Comparison of the estimated SINR PDF model vs. simulations

IV. PRACTICAL ASPECTS OF PF SCHEDULING

Until now we have considered perfect channel state knowl-
edge at the base station as well as modulation and coding
schemes (MCS) that can be set independently per resource
block. These are rather optimistic assumptions as typical
OFDMA realization are subject to some limitations. For
instance, in LTE all resource blocks assigned to a certain
terminal are utilized by the same modulation and coding
type. Likewise, a quantized channel feedback is sent from
the terminals to the base station. We discuss the impact of
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Fig. 3. Comparison of the estimated rates vs obtained rates from simulations

these two design decisions on our mathematical model in the
following.

A. Common Modulation and Coding Scheme

The common MCS restriction introduces additional refine-
ments to the rate estimation model introduced so far. This
is mainly due to the joint statistics of the currently assigned
RBs. Now, the MCS selection will depend on the instantaneous
channel realizations of the jointly assigned RBs. In our case,
we select a conservative MCS selection process based on the
worst SINR realization of the assigned RBs. This requires us
to make use of the minimum order statistics. For a nonempty
subset A ⊆ {1, . . . , N} of the RBs we define:

Mj,A =

{
1, A = {n |Mj,n = 1},
0, else. (16)

We model hence the transmission throughput to depend on
the minimal SINR of the assigned RBs to j:

Xmin
j,A = min

n∈A
Xj,n (17)

Using this notation, we can express the rate for MS j with a
scheduled set of RBs A as:

Rj,A = Pj,A|A|
R · S
TTTI

∫ ∞
0

fXmin
j,A |Mj,A=1(x) · C(x) dx (18)

in which |A| is the size of the set A and Pj,A = P (Mj,A = 1)
is the probability that the set A will be assigned to MS j. The
computation of this probability is involved as the resource
blocks in A can be subject to correlation (due to the delay
spread of the propagation environment). We continue our
analysis under the assumption that the resource blocks of A
are statistically independent. This introduces an error that we
quantize afterwards in the validation part (finding that it is
rather small). Therefore, we obtain for the probability:

Pj,A =
∏
n∈A

P(Mj,n = 1)
∏
n/∈A

[1− P(Mj,n = 1)] (19)

The CDF of minimum order statistic Xmin
j,A conditioned un-

der Mj,A = 1 computes to

FXmin
j,A |Mj,A=1(x) = P

(
min
n∈A

Xj,n ≤ x |Mj,A = 1

)
= 1− P (Xj,n > x∀n ∈ A |Mj,A = 1)

= 1−
∏
n∈A

F̄Xj,n|Mj,n=1(x), (20)

in which F̄Xj,n|Mj,n=1(x) = 1− FXj,n|Mj,n=1(x). Differenti-
ating yields the PDF

fXmin
j,A |Mj,A=1(x) =

∑
n∈A

[
fXj,n|Mj,n=1(x)

·
∏

∀m 6=n∈A

F̄Xj,m|Mj,m=1(x)
]

(21)

This PDF allows the computation of (18) for an RB assign-
ment A. Finally, the total rate for each MS j is the sum of
the rates over all the possible assignments:

Rj =
∑

∀A⊆{1,...,N}

Rj,A . (22)

1) Validation: The same configuration parameters as in
Section III-B were used, with the exception that the jointly
assigned RBs are not allowed to transmit with separate MCS
anymore. Instead, the MCS selection will depend on the SINR
of the worst contemporary assigned RB. The average obtained
rates from simulations are plotted in Figure 4 (observed rates)
and compared against the independent and uniform MCS
models. We observe a good match between the mathematical
predictions and the simulated values in general where the
slight discrepancy is due to the frequency correlation between
resource blocks in the simulation model (which is not consid-
ered in the analytical model).
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Fig. 4. Rate estimation comparison (model) for independent vs uniform MCS
(model) vs obtained rates from simulations

B. Quantized feedback

A further complication comes from the fact that in LTE
systems the terminals do not report the SINR to the base
station. Instead, the SINR according to the rate that could
be employed on the resource block is quantized. This alters
the proportional fair scheduling algorithm, as they are not the



normalized SINRs that are used for the scheduling decision.
Instead, the algorithm considers the instantaneous rates divided
by the amount of data transmitted to the terminal over that
resource block during the last W slots of the window. This
’rate-based’ proportional fair scheduler is much harder to
analyze precisely as the distribution of the rates has to be
obtained (also taking the uniform setting of the modulation and
coding schemes into account). However, we have observed that
the usage of the SINR-based PFS analysis is approximately
correct if also used for the rate-based PFS. To illustrate, in
Figure 5 both models for independent and common MCS
for SINR scheduling are compared with the obtainable rates
for rate PFS. We find a slightly better performance for the
simulated results from the rate-based PFS compared to the
analysis for the SINR-based PFS. This vanishes for terminals
closer to the cell edge.
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Fig. 5. Rate estimation comparison (models) for independent vs uniform
MCS vs rate scheduler

V. COMPARISON TO REFERENCE MODELS

In this section we compare the results derived in this
paper with several reference models from literature. The first
reference model assumes instantaneous rates to be Gaussian
distributed. This model is commonly encountered in related
work, i.e., [11], [12], [13], [14], [15]. In the Gaussian model,
the mean E[rj,n] is defined as

E[rj,n] =

∫ ∞
0

C

(
P sj,n

P ij,n + η
· y

)
· exp(−y)dy (23)

and the standard deviation σrj,n is given by

σ2
rj,n =

∫ ∞
0

C

(
P sj,n

P ij,n + η
· y

)2

· exp(−y)dy (24)

−

(∫ ∞
0

C

(
P sj,n

P ij,n + η
· y

)
· exp(−y)dy

)2

.

Based on the above, the average rate obtained from the PFS
is calculated as follows:

Rj,n =
R · S
TTTI

∫ ∞
0

(
yσrj,n + E[rj,n]

)
√

2π
exp

(
−y2

2

)
·

N∏
i=1,i6=j

F(0,1)

(
E[ri,n]σrj,n
E[rj,n]σri,n

y

)
dy , (25)

in which F(0,1)(·) is the standard Gaussian distribution func-
tion with zero mean and unit variance.

The second reference model is the ”Interference as Noise”
(IaN) model. Within this model, interference is regarded as an
additional source of noise. Hence, the SINR is exponentially
distributed according to the following PDF:

fXj,n
(x) =

P ij,n + η

P sj,n
exp

(
−
P ij,n + η

P sj,n
· x

)
. (26)

For comparison, this function is plugged into (15) and used
to calculate the rates per terminal according to (11).

The last reference model is what we refer to as the ”Naı̈ve”
approach. Instead of a PDF, this model uses the simplified
formula γ̄j,n =

P s
j,n

P i
j,n+η

for the SINR. For rate function C(γ),
the resulting average rates compute to

Rj =

N∑
n=1

R · S
J · TTTI

C

(
P sj,n

P ij,n + η

)
. (27)

These reference models are compared with the rates ob-
served from simulations for the rate PFS and the “Independent
MCS” model introduced in Formula 10. The comparison is
shown in Figure 6. For mobile terminals in the cell center,
the prediction quality of all schemes is comparable. However,
all three reference models underestimate the data rate at the
cell edge. This is particularly significant for the Naı̈ve model
for which the data rates decay the most towards the cell edge.
However, compared with simulation observations, this is not
the case. This is due to the fact that the Naı̈ve model does
not consider multi-user diversity gain, hence overestimating
the impact of interference.

The rates predicted by the Gaussian and the IaN model are
relatively similar, especially in the high interference regime
of cell-edge terminals. However, just like the Naı̈ve model,
both severely underestimate the data rate. While Gaussian ap-
proximation works well for noise-limited systems, this shows
that it is inaccurate under the presence of interference. Con-
cluding, the three reference models overestimate the impact of
interference, in particular at the cell edge. We believe that this
has important implications for system tasks like interference
coordination and handover decisions.
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Fig. 6. Comparison of the observed rates from simulations with reference
models and the one proposed here



VI. CONCLUSIONS

The mathematical models introduced in this paper have
been shown to be capable of describing the scheduled SINR
distribution and estimating the obtainable rates in OFDMA
systems employing PFS. They are valid for systems operating
on independent as well as common MCS. Simulation results
show that the proposed scheme with independent MCS closely
approximates the data rates obtained by rate based PFS.
Comparing these results to three reference schemes show that
common simplifying assumptions on the rate distribution are
not applicable to interference-limited scenarios. Finally, we
note that modeling of dynamic schedulers is a tedious process
and needs exact knowledge of the instantaneous SINR or rate
distribution.
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