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Abstract—A two-way relay-interference channel describes a
system of four communicating transceivers with two interjacent
parallel relays arranged in a bidirectional 2 × 2 × 2 relay-
interference network. Two pairs of transceivers are each com-
municating bidirectionally with the aid of both relays. All trans-
ceivers and relays are assumed to operate in full-duplex mode.

Since Interference Neutralization is known as a promising
method to achieve the cut-set upper bounds on the data rates
of the unidirectional relay-interference channel, we investigate
a Cyclic Interference Neutralization scheme on the correspond-
ing bidirectional relay-interference channel w.r.t. a conceptual
channel model based on a polynomial ring. We show that, if the
channel matrix satisfies a certain set of symmetry conditions, a
total number of 4 degrees of freedom is asymptotically achievable.

I. INTRODUCTION

The impact of multi-user interference is a long-standing and
very challenging problem in wireless communication systems.
In recent years, cooperative communication schemes have
significantly influenced the designs of future communication
concepts. The continuing progress in that area also provided
the novel theoretical concepts of Interference Alignment (IA)
[1], [2] and Interference Neutralization (IN) [3]–[5].

Instead of using conventional approaches to mitigate multi-
user interference, e.g., orthogonalization or treating inter-
ference as noise, IA confines all the undesired interference
signals into exactly one half of the signal space at each user,
while the dedicated signals are received interference-free in the
other half. Even though half of the given signal space is con-
sumed by interference, this strategy remarkably outperforms
conventional communication strategies when considering a
large quantity of interfering users.

If signals are moreover forwarded in cooperative multi-
hop networks with multiple interjacent relays, e. g., the relay-
interference channel, IA enables IN. The basic idea of IN to
cancel multiple instances of the same interference which is
forwarded by different relays such that it is ”erased over the
air”. Such an approach is capable to provide an effectively
interference-free channel.
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(DFG) within the project Power Adjustment and Constructive Interference
Alignment for Wireless Networks (PACIA - Ma 1184/15-2) of the DFG
program Communication in Interference Limited Networks (COIN) and fur-
thermore by the UMIC Research Centre, RWTH Aachen University.

Fig. 1. The 2 × 2 × 2 full-duplex two-way relay-interference channel in
terms of the cyclic polynomial channel model: Transeivers Ti transmit signals
ui(x) to relays Rj over the uplink channel matrix D = (dji)1≤j≤2,1≤i≤4 and
the relays receive rj(x). Relays Rj forward signals vj(x), as functions of
rj(x), over the downlink channel matrix E = (eij)1≤i≤4,1≤j≤2 to transeivers
Ti who receive the corresponding ti(x).

In the recent works [6], [7], the IN scheme is also general-
ized for a unidirectional K ×K ×K interference channel and
it is termed as Interference Diagonalization.

Furthermore, a two-way channel describes a prevalently
occurring communication scenario where user-pairs exchange
messages bidirectionally. An exemplary two-way relaying
scheme with a single relay is considered in [8]. The particular
configuration of a 2×2×2 two-way relay-interference channel
[9], [10] considers two pairs of mutually communicating users
as depicted in Fig. 1. This setup is also a generalization of the
unidirectional 2 × 2 × 2 relay-interference channel in [3], [5].

Both IA and IN can be motivated by the conceptual linear
deterministic channel model [11], as in [3], [12]. The closely
related cyclic polynomial channel model is introduced in [13],
[14]. In [13], it is shown that Cyclic IA schemes achieve 4/3
degrees of freedom (DoF) for the cyclic polynomial X- channel
and K/2 DoF for the cyclic polynomial K- user interference
channel. Note that a comparable polynomial model of a finite
field X- channel is also considered in [15]. Furthermore, it is
shown in our related work [14] that Cyclic IN can achieve
2 DoF on the (unidirectional) polynomial relay-interference
channel. These DoF results correspond to the upper bounds
given in [16], [1], [5] for Gaussian channels.

Contributions. In the present paper, we apply and further
generalize the concept of Cyclic IN [14] to the full-duplex two-
way 2×2×2 relay-interference channel in the cyclic polynomial
channel model. Our proposed scheme achieves 4n−2

n
DoF for n

dimensions, if the channel matrices satisfy certain symmetries.
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This scheme includes network-coded signal alignment at the
relays and cancellation of back-propagated self-interference.
Our result corresponds to the cut-set upper bound of 4 DoF
for n→∞ and supports recent results by Lee et al. in [10].

Organization. The system model is introduced in Sec-
tion II. The basic concept of the two-way Cyclic IN scheme is
proposed in Section III-A. In Section III-B, we investigate an
asymptotic Cyclic IN scheme that achieves the upper bound of
four DoF. We briefly discuss a feasibility problem concerning
the corresponding Aligned IN scheme in Section IV and we
conclude in Section V.

Notation. The operator diag(a1, . . . , an) specifies a dia-
gonal matrix with the entries a1, . . . , an on the main diagonal
and zero entries elsewhere. A univariate polynomial of degree
n − 1 in the indeterminate x and with coefficients p[i] is
denoted by p(x) = ∑n−1i=0 p

[i]xi.

II. SYSTEM MODEL

The conceptual communication model of the cyclic polyno-
mial channel refers to the works [13], [14] and the notation is
adopted here.

A 2 × 2 × 2 two-way relay-interference channel as given in
[9] comprises of four full-duplex transceivers T1,T2,T3,T4,
and two full-duplex relays R1,R2 as depicted in Fig. 1. The
set of transceiver-indices is K = {1,2,3,4} and the set of
relay-indices is R = {1,2}. Each transceiver Ti transmits a
message Wi, i ∈ K. The user-pair (T1,T3) desires to exchange
messages W1 and W3 over the given channel and the user-
pair (T2,T4) desires to exchange messages W2 and W4,
respectively. There are no direct links between the transceivers
and no direct links between the two relays.

The set of dedicated transmitter-indices for a receiver
Ti is denoted by Di, i. e., the singleton sets D1 = {3},
D2 = {4}, D3 = {1} and D4 = {2}. We combine the indices
of the two communicating user-pairs in the sets G13 = {1,3}
and G24 = {2,4}. The set of interfering transmitter-indices
at a receiver Ri is denoted by Ii, i. e., I1 = I3 = {2,4} and
I2 = I4 = {1,3}.

A transmitted signal from Ti, i ∈ K, is described by a
polynomial ui(x) which is limited to a number of n dimen-
sions. A single dimension k ∈ {0, . . . , n − 1} and its assigned
coefficient u[k] is addressed by an offset xk as follows:

ui(x) =∑
n−1

k=0
u[k]xk. (1)

Let the indices denoted in squared brackets be reduced by
the modulus n for notational convenience. A message Wi,
i ∈ K, is partitioned into an n-dimensional vector wi of n
submessages W [k]

i with k ∈ {0, . . . , n − 1}:

wi = (W [0]
i ,W

[1]
i , . . . ,W

[n−1]
i ). (2)

The transceiver Txi maps the submessages wi to the transmit-
ted signal by ui(x) =wix

T. We define the vector addressing
the n offsets by x = (x0, x1, . . . , xn−1).

The influence of the wireless channel on the signal ui(x)
is represented by a parameterized cyclic right-shift of the

coefficients over n dimensions. For polynomials, it is common
to describe such a cyclic right-shift by k positions by a
multiplication with xk and then taking the modulus xn − 1.

To model individual cyclic shifts for each transmitter-
receiver link, the uplink channel from the four transceivers
to the two relays is described by the uplink channel matrix
D = (dji)1≤j≤2,1≤i≤4 and the downlink is described by the
downlink channel matrix E = (eij)1≤i≤4,1≤j≤2 with dji, eji ∈
D ∶= {xk ∣ k ∈ N}, respectively. These coefficients are assumed
to be static over the whole communication period. The channel
matrices are fully and globally known. We denote the offsets
by δji, ηji ∈ N, i. e., dji = xδji and eij = xηij .

In both two-hop and two-way relay communication sys-
tems, the channel access is described by two different access
phases: The multiple-access phase or first hop describes the
communication from transceivers to relays and the broadcast
phase or second hop describes the communication from relays
to transceivers, accordingly. For multiple-relays we will term
these steps by the uplink-phase (UL-phase) and the downlink-
phase (DL-phase).

1) UL-phase: The sources Ti, i ∈ K, map the message Wi

to a polynomial ui(x). The polynomials ui(x) are transmitted
to the relays Rj , j ∈R, over the uplink matrix D so that the
relays Rj receive a superposition of interfering polynomials:

rj(x) =∑
4

i=1
djiui(x) mod(xn − 1). (3)

2) DL-phase: The relays Rj use a causal relaying function
on their received polynomials rj(x) which are mapped to
the polynomials vj(x). Then, the relays Rj forward vj(x)
to the destinations Ti, i ∈ K, over the downlink matrix E.
The destinations Ti receive the following superposition:

ti(x) =∑
2

j=1
eijvj(x) mod(xn − 1). (4)

The superposition of those polynomials that are not dedicated
for a destination Ti causes undesired interference. Only if all
dedicated signals can be received interference-free, the four
destinations can decode their dedicated messages to obtain
Ŵ1, Ŵ2, Ŵ3 and Ŵ4, respectively.

For notational convenience, the transmission vector of the
UL-phase is denoted by u = (u1(x), u2(x), u3(x), u4(x))
and the received vector is denoted by r = (r1(x), r2(x)).
In the DL-phase, we utilize the vectors v = (v1(x), v2(x)) and
t = (t1(x), t2(x), t3(x), t4(x)). Then, the transfer functions
of the given channel are compactly expressed by:

rT =DuT mod(xn − 1), (5)

tT = EvT mod(xn − 1), (6)

where the modulo operation is taken component-wise.
To evaluate the achieved data rate, the metric of the degrees

of freedom (DoF) is defined as the maximal number M of
messages conveyed interference-free over the channel in n
dimensions [13], [14]:

DoF = M
n
. (7)
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III. CYCLIC TWO-WAY INTERFERENCE NEUTRALIZATION

For an interference-free transmission between four users
with n dimensional signals, a total number of M = 4n inde-
pendent submessages must be decodable, i. e., n messages per
user. Then a total number of exactly 4 DoF would be achieved.
Such a result corresponds to the cut-set upper bound on the
DoF of the 2×2×2 two-way relay-interference channel. In the
following subsections, we propose an Cyclic IN scheme that
achieves the given bound in the asymptotical limit for n→∞.

A. Cyclic IN for the Two-Way 2 × 2 × 2 Channel

Firstly, we introduce the conditions of a Cyclic IN scheme.
1) UL-phase: Each transceiver Ti, i ∈ K, transmits ui(x). The
relays R1 and R2 receive the following superposition of four
submessages per dimension k as given by (3) for j ∈R:

r
[k]
j =∑

4

i=1
W
[k−δji]
i . (8)

The relays R1, R2 forward their received messages as follows:

v1(x) = xγ1r1(x) mod(xn − 1), (9)
v2(x) = − xγ2r2(x) mod(xn − 1). (10)

The parameters γi ∈ N are included to enable an internal cyclic
shift within the relays Ri. The change of sign at relay R2 is
essential to provide the complementary signals for IN.

2) DL-phase: As both relays forward four messages each,
there are eight submessages received at each destination Tj ,
j ∈ K, per dimension k:

t
[k]
j =∑

4

i=1
W
[k−δ1i−γ1−ηj1]
i −W [k−δ2i−γ2−ηj2]

i . (11)

With Γ = diag(xγ1 ,−xγ2), this is compactly expressed by:

tT = EΓDuT mod(xn − 1). (12)

Those submessages wi that are back-propagated from the
relays to their original transceiver Ti during the DL-phase
are called back-propagated self-interference [9], [10]. Since
the transceivers Tj know their own signals transmitted in the
previous UL-phase a priori, they can completely cancel their
corresponding self-interference. By taking such a cancellation
into account, the received signal (11) at Tj yields:

t
[k]
j =∑

4

i=1,i≠j
W
[k−δ1i−γ1−ηj1]
i −W [k−δ2i−γ2−ηj2]

i . (13)

Note that the self-interference is forwarded by both relays.
We further demand that the inter-user interference caused

by the undesired transceivers in Ii is neutralized. The es-
sential idea of IN is to combine two identical inter-user
interference signals with complementary signs within the same
dimension k, such that their sum is zero [14]. Thence, the
interference-neutralization conditions for all interfering pairs,
with i ∈ K, j ∈ Ii, are:

δ1i + γ1 + ηj1 ≡ δ2i + γ2 + ηj2 (modn). (14)

This concept is also illustrated in Fig. 2.

Fig. 2. The interferenence-neutralization conditions in (14) demand that the
identical signals transmitted by Ti coincide at each undesired transceivers Tj

with complementary signs, so that interference is ”erased over the air”.

However, dedicated submessages may not be neutralized
and must remain decodable. Accordingly, the no-signal-
neutralization conditions for all dedicated pairs, with i ∈ K,
j ∈ Di, are:

δ1i + γ1 + ηj1 ≢ δ2i + γ2 + ηj2 (modn). (15)

Altogether, assuming that self-interference is removed and
the conditions (14) and (15) hold, the transceivers Tj only
receive a superposition of two dedicated submessages per
dimension k:

t
[k]
j =W [k−δ1i−γ1−ηj1]

i −W [k−δ2i−γ2−ηj2]
i , j ∈ Di. (16)

Using the vectorized notation, this yields tj(x) = (XCj)wT
j

with coefficient matrix Cj = (cj,lm)0≤l,m≤n−1 with row index
l and column index m and X = diag(x0, x1, . . . , xn−1). For
i ∈ Dj , Cj is a circulant matrix with two non-zero bands:

cj,lm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 , if m − l ≡ δ1i + γ1 + ηj1 (modn),
−1 , if m − l ≡ δ2i + γ2 + ηj2 (modn),
0 , else.

(17)

The received submessages are decodable by linear decoding
if det(Cj) ≠ 0 holds. We can decompose the two-way
2 × 2 × 2 relay-interference channel into four (unidirectional)
relay-interference channels:

1) The dedicated links are T1 → T3 and T2 → T4.
2) The dedicated links are T3 → T1 and T4 → T2.
3) The dedicated links are T1 → T3 and T4 → T2.
4) The dedicated links are T3 → T1 and T2 → T4.

In [14, Lem. 1], we have already shown that Cyclic IN is not
possible if all transmitting users allocate n submessages in
n dimensions in a unidirectional 2 × 2 × 2 relay-interference
channel. Thus, as none of the four contained unidirectional
relay-interference channels supports Cyclic IN for the case
of n submessages per user, the two-way relay-interference
channel does not either.

B. Asymptotic Cyclic Interference Neutralization

Anyhow, in order to enable Cyclic IN with linear decoding,
we propose an asymptotic Cyclic IN scheme that generalizes
the asymptotic Cyclic IN scheme in [14] to the given 2×2×2
two-way relay-interference channel:

1) UL-phase: The transceivers T1,T3 transmit n sub-
messages whereas T2,T4 only transmit n − 1 submessages,
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discarding the submessages W
[τ2]
2 ,W

[τ4]
4 for the pair of

parameters τ2, τ4 ∈ {1, . . . , n − 1}:

ui(x) =∑
n−1

k=0
W
[k]
i xk, i = 1,3, (18)

ui(x) =∑
n−1

k=0,k≠τi
W
[k]
i xk, i = 2,4. (19)

The submessages per dimension k received at the two relays
correspond to (8), except for the cases with j ∈R, m ∈ {2,4}:

r
[τm+δjm]
j =∑

4

i=1,i≠m
W
[τm+δjm−δji]
i . (20)

We choose the parameters τ2, τ4 such that

κ2 ∶= τ2 + δ22 ≡ τ4 + δ24 (modn) (21)

holds, i. e., both the discarded submessages will affect exactly
one dimension κ2 at receiver R2. Accordingly, we define
κ12 ≡ τ2 + δ12 (modn) and κ14 ≡ τ4 + δ14 (modn) to
describe the dimensions at R1 that are affected by the dis-
carded submessages from T2 and T4. Due to the interference-
neutralization conditions, the dimensions of these discarded
submessages are also aligned at the relay R1. To show this,
we consider (14) for i ∈ {2,4} and j = 1:

δ12 + γ1 + η11 ≡ δ22 + γ2 + η12 (modn),
δ14 + γ1 + η11 ≡ δ24 + γ2 + η12 (modn).

By substituting γ1, we easily obtain:

δ12 − δ14 ≡ δ22 − δ24 (modn). (22)

It follows from (21) and (22) that τ2 + δ12 ≡ τ4 + δ14 (modn)
holds, i. e., we may set κ1 ∶= κ12 ≡ κ14 (modn).

2) DL-phase: Relay R1 forwards its received polynomial
r1(x) according to (9). Relay R2 forwards only n− 1 dimen-
sions of the received polynomial r2(x) and discards r[κ2]

2 :

v2(x) = −xγ2∑
n−1

k=0,k≠κ2
r
[k]
2 xk mod(xn − 1). (23)

Let σji = κi + γi + ηji. The received dimensions at the
destinations Tj are as given in (16). The following cases
result from the discarded coefficients, and self-interference
cancellation for j ∈ G13, i ∈ Dj :

t
[σj1]

j = W
[σj1−δ1i−γ1−ηj1]
i −W [σj1−δ2i−γ2−ηj2]

i

−W [σj1−δ22−γ2−ηj2]
2

+W [σj1−δ14−γ1−ηj1]
4 −W [σj1−δ24−γ2−ηj2]

4 , (24)

t
[σj2]

j = W
[σj1−δ1i−γ1−ηj1]
i −W [σj2−δ2i−γ2−ηj2]

i

+W [σj1−δ12−γ1−ηj1]
2

+W [σj1−δ14−γ1−ηj1]
4 −W [σj1−δ24−γ2−ηj2]

4 , (25)

and for j ∈ G24, i ∈ Dj :

t
[σj1]

j = W
[σj1−δ11−γ1−ηj1]
1 −W [σj1−δ21−γ2−ηj2]

1

−W [σj1−δ2i−γ2−ηj2]
i

+W [σj1−δ13−γ1−ηj1]
3 −W [σj1−δ23−γ2−ηj2]

3 , (26)

t
[σj2]

j = W
[σj2−δ11−γ1−ηj1]
1 +W [σj2−δ1i−γ1−ηj1]

i

+W [σj2−δ13−γ1−ηj1]
3 . (27)

By further including the interference-neutralization condi-
tions from (14), the equations (24) and (25) reduce to:

t
[σj1]

j = W [σj1−δ1i−γ1−ηj1]
i , i ≠ j ∈ G13, (28)

t
[σj2]

j = W [σj2−δ2i−γ2−ηj2]
i , i ≠ j ∈ G13. (29)

By definition of σji and by condition (14), we observe that
(26) and (27) coincide for each j ∈ G13.

According simplifications also apply to (26) and (27):

t
[σj1]

j = −W [σj1−δ2i−γ2−ηj2]
i , i ≠ j ∈ G24, (30)

t
[σj2]

j = W
[σj2−δ1i−γ1−ηj1]
i +W [σj2−δ11−γ1−ηj1]

1

+W [σj2−δ13−γ1−ηj1]
3 , i ≠ j ∈ G24. (31)

The following theorem generalizes the (unidirectional)
Cyclic IN scheme in [14, Thm. 2] to the present two-way case.

Theorem 1. Asymptotic Cyclic Interference Neutralization on
the 2 × 2 × 2 full-duplex two-way relay-interference channel
achieves 4n−2

n
DoF if all the following conditions hold:

(a) backpropagated self-interference is cancelled at each Ti,
(b) the separability conditions (14) and (15) hold,
(c) and the number of signalling dimensions is n ≥ 2.

Proof: The n dedicated submessages received at Tj , j ∈ G13,
are described by (16) and by the exceptions in (28) and (29).
Now, the corresponding coefficient matrices Cj have almost
the same structure as (17) except that the single entry in row
σj1 and column σj1 − δ1i − γ1 − ηj1 is zero. In this case,
all n submessages at Tj with j ∈ G13 are decodable since
det(Cj) = 1 holds as in [14] for the unidirectional case.

The n − 1 dedicated submessages at Tj , j ∈ G24, are also
decodable. In this case, it suffices to consider a reduced
(n − 1) × (n − 1) coefficient matrices C̃j since only n − 1
submessages per transceiver must be decoded. Moreover, the
interference in the remaining dimension is not neutralized
anyway. In particular, the entry in row σj2 and column with
W
[τi]
i , j ∈ Di, j ≠ i ∈ G24 is discarded. Then, det(C̃j) = 1 for

j ∈ G13 as analogously shown in [14].
By considering the derivation of (22), we observe that

the proposed interference-neutralization conditions demand a
particular symmetry of the considered channel. We subsume
the symmetry for all analogous cases by the parameters
α1, α2, β1, β2 ∈ N:

α1 ∶= δ11 − δ21 ≡ δ13 − δ23 (modn), (32)
α2 ∶= δ12 − δ22 ≡ δ14 − δ24 (modn), (33)
β1 ∶= η11 − η12 ≡ η31 − η32 (modn), (34)
β2 ∶= η21 − η22 ≡ η41 − η42 (modn). (35)

Using this parameterization, the interference-neutralization
conditions yield:

α1 + γ1 ≡ γ2 − β2 (modn), (36)
α2 + γ1 ≡ γ2 − β1 (modn), (37)
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and the no-signal-neutralization conditions are:

α1 + γ1 ≢ γ2 − β1 (modn), (38)
α2 + γ1 ≢ γ2 − β2 (modn). (39)

Substituting (36) and (37) into (38) and (39) yields in both
cases:

α1 − α2 ≢ β2 − β1 (modn). (40)

Valid matrices that fulfill these simplified conditions clearly
exist if n ≥ 2 as demanded by (c).

Altogether, 4n − 2 submessages are conveyed interference-
free over n dimensions. In the asymptotic limit, the Cyclic
IN scheme achieves limn→∞

4n−2
n

= 4 DoF on the two-way
2 × 2 × 2 relay-interference channel. ◻

IV. DISCUSSION

In contrast to our work on the Cyclic IN scheme on the
(unidirectional) relay-interference channel [14], the present
Cyclic IA scheme can not be translated to a corresponding
Aligned IN scheme in exactly the same manner.

The main problem, we encouter is that the signals from the
transceivers T2 and T4 aligned at R1 are exactly the same
ones aligned at R2, since κ12 ≡ κ14 (modn) holds as given
in Section III. Although this problem is not an issue for the
cyclic polynomial channel representation or the related linear
deterministic channel representation, we conjecture that this is
an overconstrained problem for the Aligned IN framework [5]
based on spatial IA [1].

Just recently, it has been shown that the cut-set upper bound
of 4M DoF is achievable, but under the condition that the
relays are equipped with a greater number of N > 4

3
M

antennas by using the particular IN scheme provided in [10].
An interesting problem that remains to be solved is whether
an Aligned IN scheme is capable to achieve the cut-set upper
bound of 4M DoF on the related Gaussian MIMO channel
model with only M = N antennas at the relays.

V. CONCLUSIONS

We combine the concepts of Cyclic Interference Neutra-
lization and of two-way relaying and apply them to the
2 × 2 × 2 two-way relay-interference channel. It is shown that
the presented scheme asymptotically achieves the cut-set upper
bound of 4 degrees of freedom for a given symmetry of the
channel matrix.

We utilize a conceptual channel model that describes the
signals in terms of cyclically shifted polynomials in a poly-
nomial ring. The channel access of the proposed Cyclic
Interference Neutralization scheme is described by an uplink-
phase and a downlink-phase which correspond to the first and
second hop of the interference neutralization scheme of the
unidirectional 2 × 2 × 2 relay-interference channel but also to
the multiple-access-phase and the broadcast-phase of current
two-way relaying schemes with single relays. In order to

obtain an interference-free communication, we presume that
the interference-neutralization conditions and the no-signal-
neutralization conditions hold. Furthermore, each transceiver
must be capable to cancel self-interference which is backprop-
agated from the relays.

We point out in our discussion, that the presented Cyclic
IN scheme is not yet fully applicable to the corresponding
counter-part of the Gaussian channel model. Nonetheless,
the proposed IN scheme is dedicated to address conceptual
problems and highlight further opportunities for the two-way
2 × 2 × 2 relay-interference channel.
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