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Abstract—This publication analyzes the power allocation prob-
lem for a distributed sensor network. We consider a network
that may have power-limited sensor nodes and is used for target
object classification. In the classification process, the absence,
the presence, or the type of a target object is observed by the
sensor nodes independently. Since the observations are noisy, and
are thus unreliable, they are fused together as a reliable global
decision in order to increase the overall classification probability.
The global decision is performed at a remotely located fusion
center, after combining the local observations. The combiner
uses the best linear unbiased estimator in order to estimate the
reflection coefficient of the present object accurately. By using the
proposed system architecture, we are able to optimize the power
allocation analytically in order to maximize the classification
performance if the total power of the sensor network is limited.
Two different cases of power constraints are discussed and
compared with each other. The corresponding results are valid
for additive white Gaussian channels as well as for frequency-flat
slow-fading channels.

I. INTRODUCTION

In this paper, a sensor network is considered where each
of N nodes individually transmits a signal and receives the
reflected echo from a jointly observed target object. The object
may be of K different types. It should be noted that sheer
detection may be treated as the special case of K = 2 which
corresponds to the decision ‘some object is present’ versus
‘there is no object’. The particular information at each node
is then sent to a fusion center which combines the local
observations into a single decision. This setup is illustrated
in Fig. 1, whose technical components will be specified in
detail later. Both the sensing and communication channels
are subject to additive noise. Additionally, we assume that
the sensor nodes (SN) have only limited power available for
sensing and communication. A potential application of our
approach is radar sensing, where an unknown target object
is observed for classification. Instead of using a single high-
power radar system, this task is carried out by a network of
cheap and energy-efficient SNs. To achieve comparable system
performance, the fusion center combines a multitude of local
observations into a single reliable one.

Quite naturally the problem arises how to allocate the
power for first transmitting the signal for sensing and secondly
communicating the message to the fusion center. The problem
of finding an optimum power allocation for classification and
a closed form of the objective function is extremely hard, and
it is even harder to determine optimal points under certain
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Fig. 1. System model of the distributed wireless sensor network.

constraints. The main difficulty is associated with finding an
explicit representation of the objective function as mentioned
in [1]. For a Bayesian hypothesis test criterion, the overall
classification probability cannot be analytically evaluated [2].
This limits the usability of this criterion for optimizing the
power allocation scheme. Bounds, such as the Bhattacharyya
bound [3], are also difficult to use for optimizing multidimen-
sional problems. In the present paper the objective function is
the average deviation between the estimated and true reflection
coefficients which are assumed to uniquely characterize the
type of the target object. The suggested objective function
together with the proposed system architecture enable us to
derive an analytical solution to the power allocation problem.
Total and individual power constraints are considered. Both
lead to explicit policies for the power allocation. These are
the main contributions of the present work.

Research on distributed detection originated from the at-
tempt to combine signals of different radar devices [4]. Cur-
rently, distributed detection is rather discussed in the context
of wireless sensor networks, where the sensor units may also
be radar nodes [5]–[7]. In [8], the power allocation problem
for distributed wireless sensor networks, which perform object
detection and classification, is only treated for ultra-wide band-
width (UWB) technology. Other applications, which require
or benefit from detection and classification capabilities, are
localization and tracking [9] or through-wall surveillance [10].
In [11], an approximate solution of the power allocation
problem is proposed, which allows for an analytical treatment
of power limitation per sensor node. However, the fusion rule
for the global decision has not yet been investigated in the
context of object classification.
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At this point, we have to mention that a similar allocation
problem was treated in [12]. The main difference arises from
the application of the sensor networks; in case of object
classification, a part of the total power is consumed for object
sensing. Due to this fine distinction, the optimization problem
is no longer convex and thus quite hard to solve.

The present paper is organized as follows. We start with a
detailed description of the underlying technical system in the
next section. Subsequently, the power allocation problem is
specified and analytically solved. The results are then carefully
compared and discussed.

Mathematical Notations:

Throughout this paper we denote the set of natural, integer,
real, and complex numbers by N, Z, R, and C, respectively.
Note that the set of natural numbers does not include the
element zero. Moreover, R+ denotes the set of non-negative
real numbers. Furthermore, we use the subset FN ⊆ N which
is defined as FN := {1, . . . , N} for any given natural number
N . We denote the absolute value of a real or complex-valued
number z by |z| while h̄ represents the conjugate complex of
some complex function h. The expected value of a random
variable v is denoted by E [v].

II. OVERVIEW AND TECHNICAL SYSTEM DESCRIPTION

Distributed target object classification can be formally mod-
eled as a multiple hypotheses testing problem with hypotheses
Hk, k ∈ FK , for a specific number K ∈ N, K ≥ 2, of differ-
ent object types. Each Hk corresponds to an object of the same
size, shape and alignment, but different material and, hence,
complex-valued reflection coefficients rk ∈ C, k ∈ FK . Thus,
the reflection coefficients are the only recognition features in
this work. The a-priori probability of occurrence for each ob-
ject type is denoted by πk ∈ R+, k ∈ FK , with

∑K
k=1 πk = 1.

At any instance of time, a network of N ∈ N independent
and spatially distributed sensors, as shown in Fig. 1, receives
random observations. If a target object is present, then the
received energy at the SN Sn is a part of its own radiated
energy which is back-reflected from the object’s surface and
is weighted by its reflection coefficient. The corresponding
random observations are assumed to be conditionally inde-
pendent, given any of the underlying hypotheses. We denote
all parameters which refer to the sensing channel between the
sensors and the target object by superscript R.

In general, the observations are not identically distributed
because the SNs have different distances dRn from the target
object and their radiated powers are also different. Thus, the
signal-to-noise ratio (SNR) varies between the SNs. Due to the
distributed nature of the problem, the nth sensor Sn performs
an independent observation and transmits this observation to a
fusion center located at a remote location. The communication
quality between the SN Sn and the fusion center is determined
by the corresponding distance dCn and assigned transmission
power. We denote all parameters which refer to the communi-
cation channel between the SNs and the fusion center by super-
script C. Note that the data transmission to the fusion center

may also be performed by a wired communication that does
not have any influences on the purpose of the present work.
Furthermore, we assume that the propagation channels may be
frequency-flat slow-fading channels and all data transmissions
are disturbed by additive white Gaussian noise (AWGN). We
disregard time delays within all transmissions and assume syn-
chronized data communication. We use two distinct waveforms
for each SN so as to distinguish its communication links from
the communication links of other SNs. Each waveform has
to be suitably chosen in order to suppress inter-user (inter-
node) interference at each receiver. Hence, the N received
signals at the fusion center are assumed to be conditionally
independent, given any of the underlying hypotheses. The
received random signals correspond to the local observations at
the SNs are also not identically distributed because of different
distances and assigned transmission powers. Unlike the local
independent observations, the global decision rule depends on
all observations in order to increase the overall classification
probability.

In the following subsections, we describe the underlying
system architecture in detail, whose model is depicted in
Fig. 2. The continuous-time system is modeled by its discrete-
time equivalent, where the sampling rate of the corresponding
signals is equal to the object observation rate, for the sake of
simplicity.

A. Sensor nodes

Each SN generates two streams of data symbols sRn and sCn|k
which are associated to each other due to the local observation,
as described further below.

In order to eliminate collisions caused by multiple access,
distinct waveforms hCn (t) and hRn (t) are assigned to each
stream. Furthermore, they are used as matched-filter to limit
the bandwidth of the signal. They also have to fulfill the
Nyquist criterion to avoid intersymbol interferences (ISI).

The symbol stream sRn establishes the radiation to the target
object and uses always the same data symbol. We assume,
without loss of generality, that this stream is real-valued.
The power of this stream is variable in order to adjust the
power and to enable distributed power allocation. The mean
value of the instantaneous transmission power

∣∣sRn ∣∣2 for each
observation event is given by

PRn := E
[∣∣sRn ∣∣2], n ∈ FN . (1)

After irradiation of the present target object, a part of the
radiated signal sRn is reflected from the target surface back to
the antenna. The received signal, together with additive noise,
passes through the matched-filter and is sampled uniformly at
the right time. We denote the corresponding samples of the
received signal by xRn|k ∈ C which include the corresponding
samples wRn ∈ C of the noise. We assume that the noise
has a standard deviation of σR/

√
2 > 0 in each direction. If

all receiver components are linear, then for all k ∈ FK and
n ∈ FN we can describe each sample by

xRn|k := sRn rk g
R
n + wRn , (2)
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Fig. 2. System architecture.

where the transmitted signal is weighted by the product of
the factors rk and gRn ∈ C. The time-dependent function gRn
includes the radar cross section, the influence of the antenna
and the propagation channel, the impact of the filters, and all
additional attenuation of the transmitted signal. This function
is usually a decreasing function of the distance 2 ·dRn between
transmitter and receiver. Here, the factor of two in the distance
results from that back and forth transmission between the
transceiver and the object.

After sampling the received signal, each sample is ampli-
fied by the factor vn ∈ R+ to generate the symbol stream
sCn|k ∈ C. We assume that the amplifier is linear over the whole
bandwidth and power range so that

sCn|k := xRn|k vn, n ∈ FN . (3)

The amplification factor is an unknown parameter for the
time being and will be determined by the power allocation
procedure later.

The symbol stream sCn|k is used to transmit the local
observations to the fusion center. The power of this stream
is also variable due to the amplification factor. The mean
value of its instantaneous transmission power

∣∣sCn|k∣∣2 for each
observation event is given by

PCn|k := E
[∣∣sCn|k∣∣2], k ∈ FK , n ∈ FN . (4)

Note that the instantaneous power fluctuates from observation
to observation depending on the present target object.

B. Fusion center

After transmission of the stream sCn|k by the SN Sn, the
signal is attenuated depending on the distance and it reaches
the antenna at the fusion center. The received signal, together
with additive noise, is matched-filtered and sampled at the
right time similar to the received signals at the SNs. We do not
consider inter-user interferences at the fusion center because
of the distinct waveform choices.

We denote the corresponding samples of the received signal,
which include the corresponding samples wCn ∈ C of the noise,
by xCn|k ∈ C. We assume that the noise has a standard devia-
tion of σC/

√
2 > 0 in each direction. If all receiver components

are linear, then we can describe each sample of the received
signal by

xCn|k := sCn|k g
C
n + wCn , n ∈ FN , (5)

where the function gCn ∈ C is defined analogous to the defini-
tion of gRn in Section II-A.

C. Fusion of local observations

The fusion of the local observations is performed by
weighting and combining the received samples. We use a
linear combiner which reduces the computational effort and
is a key idea in this work for an analytical solution of the
power allocation problem. We denote the output value of the
combiner by

r̃k :=

N∑
n=1

un x
C
n|k, k ∈ FK , un ∈ C, n ∈ FN . (6)

The value r̃k should be a good estimate for the true reflection
coefficient rk of the present target object. Thus, we have to
optimize the sensing powers PRn , the amplification factors vn
and the weights un in order to minimize the average deviation
between r̃k and the present rk. This will be extensively
explained later. After determining PRn , vn and un, the fusion
center observes a disturbed version of the true reflection
coefficient rk at the input of its decision unit. Hence, by using
the present system architecture, we are able to separate the
power allocation problem from the classification problem and
optimize both independently of each other.

D. Some remarks on the system model

All described assumptions are necessary to obtain a frame-
work suitable for analyzing the power allocation problem,
without studying problems of different classification methods
in specific systems and their settings.

The knowledge of the distances dRn and dCn is necessary for
a successful classification. They can be estimated by a tracking
algorithm before applying the classification process.

The accurate estimation of the channel state is also neces-
sary for the classification process and for the power allocation.
We are not often able to estimate the transmission channels,
consequently the parameters gRn and gCn remain unknown. In
such cases, the allocation problem cannot be solved exactly.

In general, SNs have only one power amplifier and a single
antenna. The antenna is usually connected to a circulator in
order to separate the signal of the transmitter to the antenna
from the signal of the antenna to the receiver, which is not de-
picted in Fig. 2. The power amplifier is also shared for sensing
and communication tasks, but not considered in this work.
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In order to increase the available power range at each SN,
time-division multiple-access (TDMA) can be used to separate
sRn and sCn|k into different time slots and to periodically share
the same power amplifier.

The introduced system architecture describes a baseband
communication system without considering time, phase and
frequency synchronization problems.

III. POWER ALLOCATION

In this section, we present an analytical method to solve
the power allocation problem subject to limited total power,
which can be arbitrarily allocated to the radar task and the
communication task. We denote the expected value of the
total power by Ptot ∈ R+. In practice, each SN has its own
constraint for the transmission power. The expected value of
the power-limitation per SN is denoted by Pmax ∈ R+. In the
next subsection, we assume that the power-limitation Pmax
of each SN is greater than the total power Ptot. Thus, none
of the SNs will exceed its own power limitation because no
more power than Ptot is available. In Subsection III-B, we will
consider the other case in which the power-limitation Pmax is
less than the total power Ptot.

In general, the objective is to maximize the overall classifi-
cation probability, however, a direct solution to the allocation
problem does not exist, since no analytical expression for
the overall classification probability is available. Instead, we
minimize the average deviation between r̃k and rk, in order to
determine the power allocation. The motivation for this method
is the separation of the power allocation problem from the
object classification procedure, as described in the last section.

We now summarize notations that we will use hereinafter
and are needed for the description of each observation process:
• Ptot: total transmission power of the network;
• Pmax: power-constraint per SN;
• PRn and PCn|k: mean values of the sensing and communi-

cation power for the nth sensor;
• πk and rk: probability of occurrence and reflection coef-

ficient of the kth object type;
• r̃k: the estimate of rk;
• gRn and gCn : channel coefficients including additional

attenuations of transmitted signals;
• wRn , wCn , σ

R
√
2

and σC
√
2

: zero-mean AWGN and correspond-
ing standard deviations in each direction;

• vn: amplification factor of the nth sensor;
• xCn|k and un: input samples and weights of the combiner.

A. No power limitation per sensor node

For each new classification process, the limitation of the
total power is an upper bound for the sum

N∑
n=1

PRn︸︷︷︸
Radar task

+ PCn︸︷︷︸
Data communication︸ ︷︷ ︸

Transmission power of one sensor for a single observation

≤ Ptot , (7)

where PCn denotes the expected value of the communication
power. The value of PCn follows from the equations (1)–(4)

and is given in terms of PRn by

PCn :=

K∑
k=1

πkP
C
n|k = PRn

∣∣rrms vn g
R
n

∣∣2 , n ∈ FN . (8)

The quantity rrms is the root mean squared value of the
reflection coefficients which is given by the equation

rrms :=

√√√√ K∑
k=1

πk |rk|2 . (9)

After incorporating (8) into (7), we obtain the modified
constraint

N∑
n=1

PRn ·
[
1 +

∣∣rrms vn g
R
n

∣∣2] ≤ Ptot (10)

which will be our first constraint for solving the allocation
problem.

As mentioned in the last section, we aim at finding esti-
mators r̃k of minimum mean squared error in the class of
unbiased estimators for each k. By using the equations (1)–
(3), (5), and (6) we may write r̃k as

r̃k = rk

N∑
n=1

unvng
C
n g

R
n

√
PRn +

N∑
n=1

un
[
vng

C
nw

R
n+wCn

]
. (11)

The estimate r̃k is hence unbiased simultaneously for each k
if E [r̃k − rk] = 0, i.e.,

N∑
n=1

unvng
C
n g

R
n

√
PRn = 1 . (12)

This equality is our second constraint in what follows. Note
that the mean of the second term in (11) vanishes since
the noise is zero-mean. Furthermore, we do not consider the
impact of the random numbers gCn and gRn in our calculations
because we assume that the coherence time of channels is
much longer than the observation time.

Since the objective is to minimize the mean squared error,
we use (11) and (12) in order to write the objective function
as

E
[
|r̃k − rk|2

]
=

N∑
n=1

|un|2
[∣∣vngCn σR∣∣2 +

(
σC
)2]

. (13)

Note that (13) is only valid if wRn and wCn are white and jointly
uncorrelated.

In summary, the optimization problem is to minimize the
mean squared error in (13) with respect to un, vn, and PRn ,
subject to constraints (10) and (12). Note that the optimization
problem is a signomial program, which is a generalization of
geometric programming, and is thus non-convex in general,
see [13].
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1) The solution: By using the method of Lagrangian multi-
pliers we are able to find a unique solution for the optimization
problem. In order to present the solution, we have to re-index
the SNs so that the inequality chain

cn :=

∣∣gRn gCn ∣∣
σR |gCn |+ rrms σC |gRn |

> cn+1 , n ∈ FN−1 , (14)

holds. Then, we obtain the solution in which only the first
SN is active and consumes the whole power Ptot. All other
SNs participate neither in the data communication, nor in the
classification of the target object. The corresponding optimal
weight, amplification factor, and transmission powers are

u1 =

√
rrms

∣∣gR1 ∣∣
σC Ptot

√
σR

∣∣gC1 ∣∣+ rrms σC
∣∣gR1 ∣∣

gR1 g
C
1

, (15)

v1 =

√
σC

rrms σR
∣∣gR1 gC1 ∣∣ , (16)

PR1 =
σRc1Ptot∣∣gR1 ∣∣ and PC1 =

rrms σ
Cc1Ptot∣∣gC1 ∣∣ . (17)

By incorporating these results into the objective function (13)
we obtain the absolute variance of r̃k as

E
[
|r̃k − rk|2

]
=

1

Ptot c21
. (18)

Note that by using the above results, the corresponding
fusion rule is simplified by discarding the influence of inactive
SNs from the fusion rule. The fusion rule (6) becomes

r̃k = u1 x
C
1|k, k ∈ FK . (19)

Note that r̃k is an unbiased estimator for rk due to
constraint (12). By similar methods we can also minimize
the mean squared error without restricting ourself to unbiased
estimators. Obviously, the optimal value will be smaller in
that case.

2) Interpretation of the solution: The proposed power allo-
cation has the following interpretation. The sensor Sn with the
largest cn consumes the whole power Ptot because its commu-
nication channels are possibly the best. Thus, the observation
of the target object is less interfered by noise and consequently
results in better data communication. The other SNs do not get
any transmission power at all since their information reliability
is too poor to be considered for data fusion.

B. Supplementary power limitation per sensor node
In this section, we assume that all SNs have the same

transmission power-constraint Pmax and we consider the case
in which the power-constraint is less than the total power Ptot.
Thus, it is not always possible to assign the total power only to
a single SN. Hence, a subset of Ñ ≤ N sensors will be active.
We retain the condition (7) that the sum power is limited and,
in addition to the constraints (10) and (12), the constraints

PRn + PCn ≤ Pmax, n ∈ FN , (20)

are included into the optimization problem.
We remark that the described method can also be extended

to individual power constraints per SN.

1) The solution: Similar to the solution in the last subsec-
tion, the optimization problem has a unique solution that can
also be determined by the method of Lagrangian multipliers.
In order to present the solution, we have to re-index the SNs
as in (14). Then, for the first Ñ − 1 nodes the solutions for
the transmission powers are

PRn =
σRcnPmax

|gRn |
and PCn =

rrms σ
CcnPmax

|gCn |
. (21)

One can easily see, that for the first Ñ − 1 nodes the sum
PRn + PCn is equal to Pmax. The last SN obtains the remaining
power which is given by

Premain := Ptot − (Ñ − 1)Pmax . (22)

Its transmission powers can be calculated as

PR
Ñ

=
σRcÑPremain

|gR
Ñ
|

and PC
Ñ

=
rrms σ

CcÑPremain

|gC
Ñ
|

. (23)

In order to satisfy the inequality

0 < Premain ≤ Pmax , (24)

which must be fulfilled for the last SN and is necessary for
a successful power allocation, we deduce the number Ñ of
active SNs as well as a lower bound for Pmax. The number
Ñ ≤ N of active SNs is the smallest integer number for which
the inequality

Ñ ≥ Ptot

Pmax
(25)

holds. From N ≥ Ñ follows the lower bound of Pmax, where
the corresponding range is given by

Ptot

N
≤ Pmax ≤ Ptot . (26)

In case that the inequality Pmax <
Ptot
N is valid, all SNs attain

their power constraints and a part of the total power remains
unallocated.

The optimized values of the amplification factors vn and
the weights un are given by the equations

vn =

√
σC

rrms σR |gRn gCn |
, n ∈ FÑ , (27)

and

un =

cn
gRn gCn

√
rrms|gCn | |gRn |

3PR
n

σRσC

Ptot c2Ñ + Pmax

Ñ∑
n=1

(c2n − c2Ñ )

, n ∈ FÑ . (28)

By inserting (21), (23), (27) and (28) into the objective
function (13) we obtain the absolute variance of r̃k as

E
[
|r̃k − rk|2

]
=

1

Ptot c2Ñ + Pmax

Ñ∑
n=1

(c2n − c2Ñ )

. (29)

Note that for Ñ > 1, the value in (29) is larger than that in (18)
for the inequality chain cn > cn+1, n ∈ FN−1.
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In the considered case, the fusion rule is not as simple
as (19) since more SNs are active in general. The fusion
rule (6) becomes

r̃k =

Ñ∑
n=1

un x
C
n|k, k ∈ FK . (30)

2) Comparison of the solutions: We make the following ob-
servation on the results by comparing the solutions which are
described in Section III-A and III-B. In the case Pmax < Ptot
the overall classification performance is reduced because of
two reasons. First, the SNR of each SN is reduced due to the
power limitation Pmax. Second, the larger the number of active
SNs is, the more noise power is summed up by the combiner
at the fusion center, as we have learned from the absolute
variances in (18) and (29). This behavior is not surprising
and the performance reduction was predictable since we have
included more restrictions into the optimization problem.

Note that the solutions in Subsection III-A are different from
the water-filling results while the solutions in Subsection III-B
are similar to water-filling, see [14].

IV. CLASSIFICATION

As we have seen in the last section, we are able to optimize
PRn , vn and un such that the estimate r̃k is unbiased for each
k. The input of the decision unit is hence a disturbed version
of the true reflection coefficient rk with additive zero-mean
Gaussian noise. If we denote the result in (18) or in (29)
by σ2, and if we use the identities (11) and (12), then the
corresponding covariance matrix of r̃k is determined by

σ2

2

(
1 0
0 1

)
. (31)

Hence, the conditional probability density of r̃k is given by

fk(r) =
1

πσ2
exp

(
−|r − rk|

2

σ2

)
, r ∈ C, k ∈ FK . (32)

Due to the simple form of the conditional densities and equal
covariance matrices for all k, we are able to use a distance
classifier for the global classification rule. Distance classifiers
are easily implementable, because in the present case we deal
with linear discriminant functions. Furthermore, they yield
high classification performances [2] because they coincide
with the Bayes classifier. Their average probability of correct
classification can be calculated by∫

r∈C

max
k∈FK

(
πkfk(r)

)
dr . (33)

In general, it is challenging to evaluate the above integral
analytically. Instead, numerical computations can be used to
evaluate the probability.

Note that the outcome of the last integral must finally
be averaged over the corresponding random variables, for
example the position of the target object or the realization
of channel coefficients gRn and gCn .

V. CONCLUSION

For the classification of a target object we have introduced
a system architecture for a distributed sensor network and its
corresponding power allocation scheme. We have shown that
by applying a simple fusion rule for combining independent
sensor observations, we are able to solve the power allocation
problem analytically. Furthermore, we have shown that the
proposed allocation procedure works with and without a
transmission power constraint per sensor node. We have also
demonstrated that by considering an extra individual power
constraint at each sensor node, the classification performance
is reduced, as expected. Moreover, the proposed solutions
are valid for AWGN channels as well as for frequency-flat
slow-fading channels with channel state information at each
receiver. The proposed method also supports selecting the
right number of sensor nodes which transmit information more
reliably than other ones. This selection method allows us to
decrease the number of active sensor nodes. It subsequently
increases the classification performance while the computa-
tional complexity is simultaneously decreased. Furthermore,
the proposed method enables the application of simple distance
classifiers which are easy to implement and achieve high
classification performance.
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