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Abstract—A 3-user device-to-device (D2D) communications
scenario is studied where each user wants to send and receive a
message from each other user. This scenario resembles a 3-way
communication channel. The capacity of this channel is unknown
in general. In this paper, a sum-capacity upper bound that
characterizes the degrees-of-freedom of the channel is derived
by using genie-aided arguments. It is further shown that the
derived upper bound is achievable within a gap of 2 bits, thus
leading to an approximate sum-capacity characterization for the
3-way channel. As a by-product, interesting analogies between
multi-way communications and multi-way relay communications
are concluded.

I. INTRODUCTION

The increase in the demand on data-rates in communication
networks accompanied by the spectrum shortage has motivated
researchers to seek new methods to combat these challenges.
Several solutions have been proposed to overcome these
challenges. Among the most promising solutions proposed
to alleviate the limitations of the existing communication
networks is a communication mode known as Device-to-device
(D2D) communication.

D2D communication is defined as direct communication
between mobile nodes in close proximity without incorpo-
rating a base station in the process (see [1] for a survey
about D2D communications). It was first introduced in [2].
Realizing that D2D communication helps offloading some
data traffic from the cellular network, standardization bodies
[3] are considering it as a potential component of future
communication systems. Due to this fact, the research focus
on D2D communication has increased recently. For instance,
the potential of interference alignment [4] for D2D networks
has been studied in [5]. Furthermore, a new spectrum sharing
mechanism for D2D communication that outperforms state-of-
the-art spectrum sharing mechanisms has been proposed in [6].
At each time, this mechanism (which can also be implemented
in a distributed way) schedules users that can achieve a near-
optimal performance by communicating simultaneously while
treating interference as noise.
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A D2D communication scenario between two nodes can
be modelled by a two-way channel (TWC), where each node
can communicate with the other node simultaneously. The
TWC was introduced by Shannon in [7] where capacity upper
and lower bounds were derived, and the capacity of some
classes of TWC was characterized. If more than two nodes
want to establish D2D communications, the scenario can be
modelled by a multi-way channel. However, the extension of
the TWC to more than two users has not been studied so
far. Hence, information-theoretic results on the fundamental
limits of communications over a multi-way channel are not
available to date. The emergence of D2D communications calls
upon establishing these limits. This direction is pursued in this
paper.

We study a three-way channel consisting of three full-duplex
nodes that want to communicate pair-wise simultaneously
with each other. We call the resulting network the 3-D2D
channel. We consider a Gaussian channel, i.e., where all nodes
are disturbed by a Gaussian noise. Furthermore, we consider
reciprocal channels where the channel gain between two nodes
is the same in both directions. For this network, we derive
novel upper bounds on the achievable rates which characterize
the degrees-of-freedom (DoF) of the channel. Interestingly,
while the cut-set bounds characterize the DoF of the TWC
[8], they do not characterize the DoF of the 3-D2D network,
which is in turn characterized by our new bound. Furthermore,
we prove the achievability of this sum-capacity upper bound
within a gap of 2 bits. It turns out that the simple opportunistic
strategy of letting the two users sharing the strongest channel
communicate while leaving the third user silent suffices to
achieve the sum-capacity of the 3-D2D channel within a
constant gap.

As a by-product of this characterization, we obtain the
following conclusion. Contrary to some networks where the
DoF changes by increasing the number of users (such as the
interference channel [9]), the DoF of the multi-way channel
does not change if we increase the number of users from
two to three. Namely, the sum-capacity of the 3-D2D channel
scales (as SNR increases) as twice the capacity of the strongest
channel between two users (2 DoF). This behaviour is the same
as that in the TWC [8].

Furthermore, we discover the following analogies between
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Fig. 1. Multi-way communication over the reciprocal 3-D2D channel. Each
user sends a message to and receives a message from the two other users.

multi-way communication (as in the 3-D2D channel) and
multi-way relaying. It was observed in [10] that the DoF of
the two-way relay channel does not change if we increase the
number of users. As mentioned above, the same observation
holds for multi-way communications when going from the
2-user to the 3-user case. Furthermore, it was observed in
[10] that independent of the number of users, the optimal
DoF can be achieved by letting the two strongest users
communicate while leaving the remaining users silent. The
same holds for the 3-D2D channel where the optimal DoF
can be achieved by letting the two users sharing the strongest
channel communicate. These analogies are interesting, and
motivate the search for further analogies between the two types
of networks.

The paper is organized as follows. The system model of the
3-D2D channel is described in Section II. The main result of
the paper is given in Section III. Upper bounds on the capacity
of the channel are given in Section IV and transmission
strategies are given in Section V. Finally, we conclude the
paper with Section VI. Throughout the paper, we use xn to
denote the length-n sequence (x(1), · · · , x(n)) and we use
capital letters to denote random variables. The function C(x)
is used to denote 1

2 log(1 + x) for x ≥ 0, .

II. SYSTEM MODEL

The 3-D2D channel is a multi-way channel consisting of
three users communicating simultaneously with each other.
The channel is fully connected as shown in Fig. 1 and all
nodes are full-duplex. Each user in the 3-D2D channel has
two independent messages, one for each remaining user. That
is, user 1 has messages m12 and m13 intended to users 2 and
3, respectively. Similarly user 2 has m21 and m23, and user 3
has m31 and m32. The message mjk is chosen uniformly from
a message set Mjk = {1, · · · , 2nRjk}, where Rjk is the rate
of the message and n is the code length.

To send his messages, user 1 sends a transmit signal xn
1 of

length n symbols, whose ith symbol x1(i) ∈ R is constructed
from the messages m12 and m13 and the received symbols

at user 1 up to time instant i, i.e., yi−1
1 , using an encoding

function E1,i. Users 2 and 3 construct their signals similarly.
Thus, we may write for each user j

xj(i) = Ej,i(mjk,mj`, y
i−1
j ), (1)

for distinct j, k, ` ∈ {1, 2, 3}. The received signals are given
by

y1(i) = h3x2(i) + h2x3(i) + z1(i), (2)
y2(i) = h3x1(i) + h1x3(i) + z2(i), (3)
y3(i) = h2x1(i) + h1x2(i) + z3(i), (4)

where h3, h2, h1 ∈ R are the (globally known) real-valued
(static) channel coefficients, and z1, z2, z3 ∈ R represent the
independent noises at users 1, 2, and 3, respectively, which are
Gaussian with unit variance and i.i.d. over time. Note that the
channels are assumed to be reciprocal, i.e., the channel gain
between two users is the same in both directions. We assume
without loss of generality that

h2
3 ≥ h2

2 ≥ h2
1, (5)

i.e., users 1 and 2 share the strongest channel. Each user has
a power constraint P , i.e.,

n∑
i=1

E[Xj(i)
2] ≤ nP, j ∈ {1, 2, 3}. (6)

After receiving ynj , user j decodes his desired messages
m̂kj and m̂`j ({j, k, `} = {1, 2, 3}) using a decoding function
Dj and his own messages mjk and mj`, i.e.,

(m̂kj , m̂`j) = Dj(y
n
j ,mjk,mj`). (7)

An error occurs if mjk 6= m̂jk for some j 6= k. The collection
of message sets, encoders, and decoders defines a code for the
3-D2D channel denoted (n,R) where

R = (R12, R13, R21, R23, R31, R32),

and induces an error probability Pe,n.
A rate tuple R is said to be achievable if there exist a

sequence of (n,R) codes such that the Pe,n can be made
arbitrarily small by increasing n. In this paper, we are inter-
ested in the sum-capacity CΣ of the 3-D2D channel defined
as the maximum achievable sum-rate RΣ =

∑
j

∑
k 6=j Rjk.

The main result of the paper is given in the following section.

III. MAIN RESULT

The main result regarding the sum-capacity of the consid-
ered 3-D2D channel is presented in the following theorem.

Theorem 1. The sum-capacity of the 3-D2D channel is
bounded by

2C(h2
3P ) ≤ CΣ ≤ 2C(h2

3P ) + 2. (8)

This theorem provides an approximate characterization of
the sum-capacity of the given network within a gap of 2 bits.
The proof of the theorem is given in Sections IV where a novel
genie-aided upper bound is derived leading to the right-hand



side of (8), and in Section V where the achievability of the
upper bound within a gap of 2 bits is shown leading to the
left-hand side of (8).

The following interesting conclusions can be drawn from
this theorem. First, the sum-capacity of the 3-D2D channel has
the same scaling behaviour as that of the two-way channel [8].
That is, both the 2-user case and the 3-user case have 2 DoF,
where the DoF is defined as

DoF = lim
SNR→∞

CΣ(SNR)
1
2 log(SNR)

. (9)

Thus, in a multi-way channel, the DoF stays constant at 2
if we increase the number of users from 2 to 3 (contrary to
some channels such as the interference channel [9] where the
DoF depends on the number of users). Furthermore, the sum-
capacity can be approached within a constant gap by letting
the two users sharing the strongest channel (users 1 and 2)
communicate while keeping the remaining user silent. That is,
by letting users 1 and 2 communicate while keeping user 3
silent, we can achieve a sum-rate which is within 2 bits (at
most) of the sum capacity. Interestingly, the same observations
were concluded for multi-way relay communications in [10]
where it was concluded that extending the two-way relay
channel [11], [12] to a three-way relay channel (Y-channel
[13]–[15]) preserves the same DoF, and that this scaling can
be achieved by letting the two strongest users communicate
while keeping the third user silent.

Next, we present new upper bounds for the 3-D2D channel
which are necessary for proving Theorem 1.

IV. UPPER BOUNDS

The cut-set bounds can be used to obtain an upper bound on
the achievable rates in a multi-way channel. In fact, the cut-set
bounds are tight for the 2-user case (the two-way channel) as
shown in [8]. However, this is not the case for the 3-user case,
i.e., the 3-D2D channel. For instance, in the 3-D2D channel,
the rates of the messages from and to user 1 can be bounded
by the cut-set bounds as

R12 +R13 ≤ I(X1;Y2, Y3|X2, X3) (10)
R21 +R31 ≤ I(X2, X3;Y1|X1), (11)

for some input distribution p(x1, x2, x3), where Xj and Yj

denote the input and output random variables. Similar bounds
can be obtained for the other 2 users. By maximizing these
bounds using the Gaussian input distribution, we can write

R12 +R13 ≤ C(h2
3P + h2

2P ) (12)

R21 +R31 ≤ C(h2
3P + h2

2P ). (13)

Note that these bounds scale as 1
2 log(P ) as P grows. Simi-

larly, we can bound the rates R21+R23, R12+R32, R31+R32,
and R13 + R23 with quantities that have the same scaling
behaviour, i.e., they scale as 1

2 log(P ). Note that this leads to
a DoF of 3. It turns out however that the cut-set bounds are not
tight for this network. In what follows, we provide bounds on
the achievable rates that lead to a tighter sum-capacity upper
bound.

Lemma 1. An achievable rate for the 3-D2D channel must
satisfy

R21 +R31 +R32 ≤ C(h2
3P + h2

2P ) + C

(
h2

1

h2
2

)
. (14)

Proof: The intuition for finding this bound is as follows.
User 1 can decode m21 and m31 from yn1 , m12, and m13 (7).
We would like to enable user 1 to decode one more message
(here m32) by giving it the least possible side information. To
guarantee this, we need to enable user 1 to construct yn2 . Now
note that if we give m23 to user 1 as side information, then
after decoding m21, user 1 has all the information available to
user 2 at time instant i = 1, i.e., the message pair (m21,m23).
Thus, user 1 can generate the first symbol of xn

2 , i.e., x2(1)
(cf. (1)). Now by using y1(1) = h3x2(1) + h2x3(1) + z1(1),
user 1 can obtain ỹ1(1) = h2x3(1)+ z1(1). After multiplying
ỹ1(1) by h1

h2
, and adding h3x1(1), user 1 obtains

ỹ2(1) = h3x1(1) + h1x3(1) +
h1

h2
z1(1). (15)

This is a less noisy version of y2(1). Note that in order to
repeat this procedure for the following time instances (i > 1),
it is not enough to have ỹ2(1). Rather, we need y2(1) exactly in
order to produce x2(2) (which is generated from m21, m23,
and y2(1) as in (1)) which is essential for obtaining y2(2).
In order to obtain y2(1) at user 1, we give him the signal
z̃n2 = zn2 − h1

h2
zn1 . Now by adding ỹ2(1) to z̃2(1), user 1 gets

y2(1) and can generate x2(2). By repeating this procedure,
user 1 can generate all instances of yn2 . Then using the decoded
m21, the provided side information m23, and the generated yn2 ,
user 1 can decode m32 just as user 2 can decode it. Therefore,
we can write

n(R21 +R31 +R32 − εn) ≤ I(M̂1,M32;Y
n
1 , Z̃n

2 ,M1,M23)

by using Fano’s inequality, where εn → 0 as n → ∞, and
where we used M1 and M̂1 to denote the random vectors
(M12,M13) and (M21,M31) indicating the message pairs sent
and received at user 1, respectively. This bound can be written
as

n(R21 +R31 +R32 − εn)

(a)

≤ I(M̂1,M32;Y
n
1 , Z̃n

2 |M1,M23) (16)

(b)
=

n∑
i=1

I(M̂1,M32;Y1(i), Z̃2(i)|M1,M23, Y
i−1
1 , Z̃i−1

2 )

(b)
=

n∑
i=1

I(M̂1,M32;Y1(i)|M1,M23, Y
i−1
1 , Z̃i−1

2 )

+

n∑
i=1

I(M̂1,M32; Z̃2(i)|M1,M23, Y
i
1 , Z̃

i−1
2 ), (17)

where (a) follows from the independence of the messages,
and (b) follows by using the chain rule. The first mutual



information expression in (17) can be bounded as

I(M̂1,M32;Y1(i)|M1,M23, Y
i−1
1 , Z̃i−1

2 )

(c)
= h(Y1(i)|M1,M23, Y

i−1
1 , Z̃i−1

2 )− h(Y1(i)|M, Y i−1
1 , Z̃i−1

2 )

(d)

≤ h(Y1(i))− h(Y1(i)|M, Y i−1
1 , Z̃i−1

2 , Zi−1
2 , Zi−1

3 ) (18)
(e)
= h(Y1(i))− h(Z1(i)|M, Zi−1

1 , Z̃i−1
2 , Zi−1

2 , Zi−1
3 ) (19)

= h(Y1(i))− h(Z1(i)|M, Zi−1
1 , Zi−1

2 , Zi−1
3 ) (20)

(f)
= h(Y1(i))− h(Z1(i)), (21)

where (c) follows by using the definition of mutual informa-
tion and by defining M = (M12,M13,M21,M23,M31,M32),
(d) follows since conditioning does not increase entropy, (e)
follows since by knowing M, Zi−1

2 , Zi−1
3 , and Y i−1

1 , all
random variables required to determine Xi

2, and Xi
3 are given,

and (f) follows from the independence of the messages and
the noise random variables. The second mutual information
expression in (17) can be bounded as

I(M̂1,M32; Z̃2(i)|M1,M23, Y
i
1 , Z̃

i−1
2 )

= h(Z̃2(i)|M1,M23, Y
i
1 , Z̃

i−1
2 )− h(Z̃2(i)|M, Y i

1 , Z̃
i−1
2 )

≤ h(Z̃2(i))− h(Z̃2(i)|M, Y i
1 , Z̃

i−1
2 , Zi−1

2 , Zi−1
3 ) (22)

= h(Z̃2(i))− h(Z̃2(i)|M, Zi
1, Z̃

i−1
2 , Zi−1

2 , Zi−1
3 ) (23)

= h(Z̃2(i))− h(Z̃2(i)|M, Zi
1, Z

i−1
2 , Zi−1

3 ) (24)

= h(Z̃2(i))− h(Z2(i)|M, Zi
1, Z

i−1
2 , Zi−1

3 ) (25)

= h(Z̃2(i))− h(Z2(i)), (26)

which can be shown by using similar arguments as (c)-(f)
above. By substituting (21) and (26) in (17) we obtain

n(R21 +R31 +R32 − εn)

≤
n∑

i=1

h(Y1(i))− h(Z1(i)) + h(Z̃2(i))− h(Z2(i)) (27)

≤ n

2
log(1 + h2

3P + h2
2P ) +

n

2
log

(
1 +

h2
1

h2
2

)
, (28)

which follows since the Gaussian distribution is a differential
entropy maximizer. Now by dividing by n and then letting
n→∞, we obtain

R21 +R31 +R32 ≤ C(h2
3P + h2

2P ) + C

(
h2

1

h2
2

)
, (29)

which proves the statement of the lemma.
Now, we have a bound on the sum R21 +R31 +R32 which

scales as 1
2 log(P ) as P grows. Next, we provide a bound on

R12 + R13 + R23 which complements the previous bound to
a sum-capacity upper bound.

Lemma 2. An achievable rate for the 3-D2D channel must
satisfy

R12 +R23 +R13 ≤ C

(
h2

3P + h2
3

h2
1

h2
2

P

)
+

1

2
. (30)

Proof: The derivation of the bound is similar to that in
Lemma 1 with one difference, we start with enhancing user 3

by replacing the noise z3 with h2

h3
z3 which is weaker than z3

since h2
2 ≤ h2

3 (cf. (5)). We denote the received signal of the
enhanced receiver y′3. Then, we give m21 and z̃n2 = zn2 − zn3
to user 3 as side information. Now, after decoding m23, user 3
has all the information available to user 2 at time instant i =
1, i.e., the message pair (m21,m23), and it can generate the
first symbol of xn

2 , i.e., x2(1). By using y′3(1) = h2x1(1) +
h1x2(1) +

h2

h3
z3(1), user 3 can obtain ỹ2(1) = h2x1(1) +

h2

h3
z3(1). After multiplying ỹ2(1) by h3

h2
, and adding h1x3(1),

user 3 obtains

ỹ2(1) = h3x1(1) + h1x3(1) + z3(1). (31)

Now by adding ỹ2(1) to z̃2(1), user 3 gets y2(1) and can
generate x2(2). By repeating this procedure, user 3 can
generate all instances of yn2 , and then using m21 and m23,
it can decode m12 just as user 2 can decode it. Therefore, we
can write

n(R12 +R23 +R13 − εn) ≤ I(M1,M23;Y
′n
3 , Z̃n

2 , M̂1,M32)

by using Fano’s inequality, where εn → 0 as n→∞. Now by
proceeding with similar steps as those in the proof of Lemma 1
(i.e., (c) to (f)), we can obtain

R12 +R23 +R13 ≤ C

(
h2

3P + h2
3

h2
1

h2
2

P

)
+

1

2
, (32)

which is the desired upper bound.
Now we have the two components necessary for establishing

our sum-capacity upper bound, given in the next theorem.

Theorem 2. The sum-capacity of the 3-D2D channel satisfies

CΣ ≤ 2C(h2
3P ) + 2. (33)

Proof: To prove this theorem, we use the upper bound on
the sum R21 +R31 +R32 given in Lemma 1 which satisfies

R21 +R31 +R32 ≤ C(h2
3P + h2

2P ) + C

(
h2

1

h2
2

)
(34)

≤ C(2h2
3P ) + C (1) (35)

= C(2h2
3P ) +

1

2
, (36)

since h2
3 ≥ h2

2 ≥ h2
1 (5), and the upper bound on the sum

R12 +R23 +R13 given in Lemma 2 which satisfies

R12 +R23 +R13 ≤ C

(
h2

3P + h2
3

h2
1

h2
2

P

)
+

1

2
(37)

≤ C
(
2h2

3P
)
+

1

2
. (38)

By adding the two bounds, we get

RΣ ≤ 2C(2h2
3P ) + 1 < 2C(h2

3P ) + 2, (39)

which proves that any achievable rate tuple must have a sum
that satisfies RΣ ≤ 2C(h2

3P ) + 2. Therefore, we obtain the
desired sum-capacity upper bound.

Clearly, this sum-capacity upper bound is tighter than that
obtained from the cut-set bounds as P increases. Namely, this
bound behaves as log(P ) as P grows (2 DoF), in contrast to



the cut-set bounds that behave as 3
2 log(P ) (3 DoF). Next, we

show that this upper bound is achievable within a constant
gap.

V. TRANSMISSION STRATEGIES

The derived sum-capacity upper bound in Theorem 2 has
the following desirable structure: it is equal to twice the
capacity of the strongest channel (h3) plus a constant. This
directly indicates a near sum-rate optimal scheme for the 3-
D2D channel. Namely, by allowing the two users sharing this
strongest channel to communicate, we can achieve the upper
bound within a constant gap.

Hence, let users 1 and 2 communicate via the channel h3

while leaving user 3 silent. This reduces the 3-D2D channel
to a two-way channel. As shown in [8], the following rates
are achievable in the resulting two-way channel

R12 ≤ C(h2
3P ) (40)

R21 ≤ C(h2
3P ). (41)

By adding the two achievable rates, we conclude that the
following sum-rate is achievable

RΣ ≤ 2C(h2
3P ). (42)

Comparing this achievable sum-rate and the upper bound (33)
in Theorem 2, we can see that this achievable sum-rate is
within a gap of 2 bits of the sum-capacity upper bound. This
leads to a sum-capacity characterization within a gap of 2 bits
as follows

2C(h2
3P ) ≤ CΣ ≤ 2C(h2

3P ) + 2. (43)

This proves the main result of the paper given in Theorem 1.
Although this transmission strategy suffices to show the

achievability of the sum-capacity upper bound of the 3-D2D
channel within a constant gap, we would like to additionally
highlight the following interesting possibility. Consider a sce-
nario where users 2 and 3 want to communicate with a rate that
can not be supported by the channel h1. Interestingly, if this
rate can be supported by the channel h2, then the two users
can successfully communicate via user 1 as follows. Users 2
and 3 use nested-lattice codes [16] to establish physical-layer
network-coding [11] for bi-directional relaying via user 1. In
other words, users 2 and 3 communicate via user 1 as in a
two-way relay channel1. This leads to the achievability of the
rates

R23, R32 ≤ C

(
h2

2P −
1

2

)
, (44)

which is larger than the rates that can be achieved via the
channel h1 given by

R23, R32 ≤ C
(
h2

1P
)
, (45)

as long as h2
2 ≥ h2

1 + 1
2P . This condition is guaranteed by

(5) at high P . While this strategy does not achieve the sum-
capacity within a constant gap, it is useful for achieving high
communication rates between users 2 and 3.

1Users 2 and 3 can also communicate via user 1 using quantize-forward as
in [12]

VI. CONCLUSION

We studied the 3-user D2D channel (a three-way channel)
and obtained its sum-capacity within a constant gap. While
this required deriving a novel genie-aided upper bound, the
achievability strategy is in fact simple; the sum-capacity is
achievable within a constant gap by letting only two users
communicate via the strongest channel. This insight is inter-
esting since it shows that increasing the number of users in
a multi-way communications channel from 2 to 3 does not
increase the sum-capacity scaling behaviour of the channel.
The authors believe that this conclusions extends to larger
multi-way communications channels with more than 3 users.
Note that this is analogous to the multi-way relay channel
where increasing the number of users also does not increase
the capacity scaling behaviour. As an extension to this work,
it would be interesting to find out if other analogies exist
between multi-way channel and multi-way relay channels.

REFERENCES

[1] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” pre-print arXiv:1310.0720v2, Oct.
2013.

[2] Y.-D. Lin and Y.-C. Hsu, “Multihop cellular: A new architecture for
wireless communications,” in IEEE INFOCOM, vol. 3, 2000, pp. 1273–
1282.

[3] 3GPP TR 22.803, “Feasibility study for proximity services (ProSe),”
v. 12.2.0, June 2013.

[4] S. A. Jafar, “Interference alignment: A new look at signal dimensions in
a communication network,” Foundations and Trends in Communications
and Information Theory, vol. 7, no. 1, pp. 1–136, 2012.

[5] H. E. Elkotby, K. M. Elsayed, and M. H. Ismail, “Exploiting interference
alignment for sum rate enhancement in D2D-enabled cellular networks,”
in IEEE Wireless Communications and Networking Conference (WCNC),
Paris, France, April 2012, pp. 1624–1629.

[6] N. Naderializadeh and A. S. Avestimehr, “ITLinQ: A new Approach for
spectrum sharing in device-to-device communication systems,” pre-print
arXiv:1311.5527v1, Nov. 2013.

[7] C. Shannon, “Two-way communication channels,” in Proc. of Fourth
Berkeley Symposium on Mathematics, Statistics, and Probability, vol. 1,
1961, pp. 611–644.

[8] T. S. Han, “A general coding scheme for the two-way channel,” IEEE
Trans. Info. Theory, vol. 30, no. 1, pp. 35–44, 1984.

[9] V. R. Cadambe and S. A. Jafar, “Interference alignment and the degrees
of freedom for the K user interference channel,” IEEE Trans. on Info.
Theory, vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[10] A. Chaaban, A. Sezgin, and A. S. Avestimehr, “Approximate sum
capacity of the Y-channel,” IEEE Trans. on Info. Theory, vol. 59, no. 9,
pp. 5723–5740, Sept. 2013.

[11] M. P. Wilson, K. Narayanan, H. D. Pfister, and A. Sprintson, “Joint
physical layer coding and network coding for bidirectional relaying,”
IEEE Trans. on Info. Theory, vol. 56, no. 11, pp. 5641–5654, Nov.
2010.

[12] A. S. Avestimehr, A.Sezgin, and D. Tse, “Capacity of the two-way relay
channel within a constant gap,” European Trans. in Telecommunications,
vol. 21, no. 4, pp. 363–374, 2010.

[13] N. Lee, J.-B. Lim, and J. Chun, “Degrees of freedom of the MIMO Y
channel: Signal space alignment for network coding,” IEEE Trans. on
Info. Theory, vol. 56, no. 7, pp. 3332–3342, Jul. 2010.

[14] A. Chaaban and A. Sezgin, “Signal space alignment for the Gaussian
Y-channel,” in Proc. of IEEE International Symposium on Info. Theory
(ISIT), Cambridge, MA, July. 2012, pp. 2087–2091.

[15] A. Chaaban, K. Ochs, and A. Sezgin, “The degrees of freedom of the
MIMO Y-channel,” in Proc. of IEEE International Symposium on Info.
Theory (ISIT), Istanbul, July 2013.

[16] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interfer-
ence through structured codes,” IEEE Trans. on Info. Theory, vol. 57,
no. 10, pp. 6463–6486, Oct. 2011.


	I Introduction
	II System Model
	III Main Result
	IV Upper bounds
	V Transmission Strategies
	VI Conclusion
	References

