Solution of Problem 1

\(\mathbf{p} = (p_1, p_2) \) be the stationary distribution for a two state homogeneous Markov chain with states \(\{0, 1\} \) and transition matrix \(\Pi = \begin{pmatrix} 1 - \alpha & 1 - \beta \\ \beta & \alpha \end{pmatrix} \).

We know, for a stationary distribution \(\mathbf{p} \Pi = \mathbf{p} \). We also know \(p_1 + p_2 = 1 \) i.e., \(p_1 = 1 - p_2 \).

\[
\begin{align*}
(p_1, p_2) \Pi &= (p_1, p_2) \\
(p_1, p_2) \begin{pmatrix} 1 - \alpha & 1 - \beta \\ \beta & \alpha \end{pmatrix} &= (p_1, p_2)
\end{align*}
\]

(1)

We get

\[
\begin{align*}
(1 - \alpha)p_1 + \beta p_2 &= p_1 \\
(1 - \beta)p_1 + \alpha p_2 &= p_2
\end{align*}
\]

(2)

substituting \(p_1 = 1 - p_2 \) in one of the above equations, we get

\[
\begin{align*}
(1 - \alpha)p_1 + \beta(1 - p_1) &= p_1 \\
p_1 &= \frac{\beta}{\alpha + \beta}
\end{align*}
\]

(3)

and

\[
\begin{align*}
p_2 &= 1 - p_1 \\
p_2 &= \frac{\alpha}{\alpha + \beta}
\end{align*}
\]

(4)

Hence the stationary distribution \(\mathbf{p} = (\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}) \).

Solution of Problem 2

Let \(X_0, X_1, X_2, \ldots X_n \) are drawn i.i.d \(\sim p(x), x \in X = \{1, 2, 3, \ldots, m\} \), and the waiting time to the next occurrence of \(X_0 \) has a geometric distribution with probability of success \(p(x_0) \).

\(a) \) Given \(X_0 = i \). \(P(X_n = i) = (1 - p(i))^{n-1} p(i) \).
\[E[N|X_0 = i] = \sum_{n=1}^{\infty} n(1-p(i))^{n-1}p(i) \]
\[= \sum_{\tilde{n}=0}^{\infty} (\tilde{n}+1)(1-p(i))^{\tilde{n}}p(i) \quad \text{(when } \tilde{n} = n-1) \quad (5) \]
\[= p(i)\sum_{\tilde{n}=0}^{\infty} (\tilde{n})(1-p(i))^{\tilde{n}} + p(i)\sum_{\tilde{n}=0}^{\infty} (1-p(i))^{\tilde{n}} \]
Using the given hint, For \(0 < r < 1\) we have
\[\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, \quad \sum_{n=0}^{\infty} nr^n = \frac{r}{(1-r)^2}. \]
we can write
\[E[N|X_0 = i] = p(i)\frac{(1-p(i))}{(p(i))^2} + p(i)\frac{1}{p(i)} \quad (6) \]
\[= \frac{(1-p(i))}{p(i)} + 1 = \frac{1}{p(i)}. \]
Therefore,
\[EN = E[E[N|X_0 = i]] = \sum_{i=1}^{m} P(X_0 = i)E[N|X_0 = i] = \sum_{i=1}^{m} p(i)\frac{1}{p(i)} = m. \quad (7) \]

b) From (a), we know, \(E[N|X_0 = i] = \frac{1}{p(i)}\).
\[E \log N = \sum_{i=1}^{m} P(X_0 = i)E[\log N|X_0 = i] \]
\[\leq \sum_{i=1}^{m} P(X_0 = i) \log E[N|X_0 = i] \quad (\text{Jensen’s Inequality}) \quad (8) \]
\[= \sum_{i=1}^{m} p(i) \log \frac{1}{p(i)} \]
\[= H(X). \]
Hence, we get \(E \log N \leq H(X)\).

Solution of Problem 3

a) By the chain rule, we can write
\[H(X_1, X_2, \ldots, X_n) = \sum_{i=0}^{n} H(X_i|X_{i-1}, \ldots, X_0) \]
\[= H(X_0) + H(X_1|X_0) + \sum_{i=2}^{n} H(X_i|X_{i-1}, X_{i-2}) \quad (9) \]
Since for \(i > 1\), the next position depends only on the previous two i.e., the dog’s walk is 2nd order Markov, if the dog’s position is the state.
Since \(X_0 = 0\) deterministically, \(H(X_0) = 0\).
For the first step, it is equally likely to be positive or negative, \(H(X_1|X_0) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = 1 \).

Furthermore, for \(i > 1 \),

\[
H(X_i|X_{i-1}, X_{i-2}) = H(0.1, 0.9). \tag{10}
\]

So,

\[
H(X_1, X_2, ..., X_n) = 1 + (n - 1)H(0.1, 0.9). \tag{11}
\]

b) The entropy rate of the dog:

\[
\frac{1}{n+1} H(X_0, X_1, ..., X_n) = \frac{1 + (n - 1)H(0.1, 0.9)}{n+1} \rightarrow_{n \to \infty} H(0.1, 0.9) \tag{12}
\]

c) The dog must take at least one step to establish the direction of travel from which it ultimately reverses. Letting \(S \) be the number of steps taken between reversals, we have

\[
E(S) = \sum_{s=1}^{\infty} s(0.9)^{s-1}(0.1) \tag{13}
\]

Starting at time 0, the expected number of steps to the first reversal is 11.

Solution of Problem 4

Given:

- \(X_i \) be i.i.d \(\sim p(x) \), \(x \in \mathcal{X} = \{1, 2, 3, ..., m\} \).
- \(\mu = EX \) and \(H = -\sum p(x) \log p(x) \).
- The typical set \(A^n_\epsilon = \{(x_1, x_2, ..., x_n) \in \mathcal{X}^n : | -\frac{1}{n} \log p(x_1, x_2, ..., x_n) - H| \leq \epsilon\} \).
- \(B^n_\epsilon = \{(x_1, x_2, ..., x_n) \in \mathcal{X}^n : \left| \frac{1}{n} \sum_{i=1}^{n} x_i - \mu \right| \leq \epsilon\} \).

a) Yes, By the definition of AEP for discrete random variables, the probability \((X_1, X_2, ..., X_n)\) belongs to a typical set goes to 1 as \(n \to \infty \).

b) Yes, by the strong law of large numbers \(P((X_1, X_2, ..., X_n) \in B^n_\epsilon) \to 1 \).

For any \(\epsilon > 0 \), there exists \(N_1 \) such that \(P((X_1, X_2, ..., X_n) \in A^n_\epsilon) > 1 - \frac{\epsilon}{2} \) for all \(n > N_1 \).

Similarly, we can say that there exists \(N_2 \) such that \(P((X_1, X_2, ..., X_n) \in B^n_\epsilon) > 1 - \frac{\epsilon}{2} \) for all \(n > N_2 \).

So for all \(n > \max(N_1, N_2) \):

\[
P((X_1, X_2, ..., X_n) \in A^n_\epsilon \cap B^n_\epsilon) = P((X_1, X_2, ..., X_n) \in A^n_\epsilon) + P((X_1, X_2, ..., X_n) \in B^n_\epsilon) - P((X_1, X_2, ..., X_n) \in A^n_\epsilon \cup B^n_\epsilon) \]

\[
> 1 - \frac{\epsilon}{2} + 1 - \frac{\epsilon}{2} - 1 \]

\[
= 1 - \epsilon. \tag{14}
\]

So for any \(\epsilon > 0 \), there exists \(N = \max(N_1, N_2) \) such that \(P((X_1, X_2, ..., X_n) \in A^n_\epsilon \cap B^n_\epsilon) > 1 - \epsilon \) for all \(n > N \), therefore \(P((X_1, X_2, ..., X_n) \in A^n_\epsilon \cap B^n_\epsilon) \to 1 \).
c) By the law of total probability, we get\
\[\sum_{(x_1, x_2, \ldots, x_n) \in A^n \cap B^n} p(x_1, x_2, \ldots, x_n) \leq 1. \]
For \((x_1, x_2, \ldots, x_n) \in A^n\), from Theorem 2.4.4, we get \(p(x_1, x_2, \ldots, x_n) \geq 2^{-n(H+\epsilon)}\).
Using these two equations, we can write
\[
1 \geq \sum_{(x_1, x_2, \ldots, x_n) \in A^n \cap B^n} p(x_1, x_2, \ldots, x_n) \geq \sum_{(x_1, x_2, \ldots, x_n) \in A^n \cap B^n} 2^{-n(H+\epsilon)} = |A^n \cap B^n| 2^{-n(H+\epsilon)}.
\] (15)
Multiplying through \(2^{n(H+\epsilon)}\), we get \(|A^n \cap B^n| \leq 2^{n(H+\epsilon)}\).

\[
\frac{1}{2} \leq \sum_{(x_1, x_2, \ldots, x_n) \in A^n \cap B^n} p(x_1, x_2, \ldots, x_n) \leq \sum_{(x_1, x_2, \ldots, x_n) \in A^n \cap B^n} 2^{-n(H-\epsilon)} = |A^n \cap B^n| 2^{-n(H-\epsilon)}.
\] (16)
Multiplying through \(2^{n(H-\epsilon)}\), we get \(|A^n \cap B^n| \geq (\frac{1}{2})2^{n(H-\epsilon)}\) for sufficiently large \(n\).

Solution of Problem 5

\[
\frac{1}{n} \log \frac{p(X_1, X_2, \ldots, X_n)p(Y_1, Y_2, \ldots, Y_n)}{p(X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n)} = \frac{1}{n} \log \prod_{i=1}^{n} \frac{p(X_i)p(Y_i)}{p(X_i, Y_i)}
= \frac{1}{n} \sum_{i=1}^{n} \log \frac{p(X_i)p(Y_i)}{p(X_i, Y_i)}
\xrightarrow{n \to \infty} E \log \frac{p(X_i)p(Y_i)}{p(X_i, Y_i)}
= -I(X; Y)
\] (17)
Hence, we get \(p(X_1, X_2, \ldots, X_n)p(Y_1, Y_2, \ldots, Y_n) = 2^{-nI(X; Y)}\), which will converge to 1 if \(X\) and \(Y\) are independent.