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>• The brain seems to be a biological neural network. Is its
functionality really understood?

> Artificial neural networks, used in deep learning, show great
success. Why exactly?

> Is there a way to explain how BioNNs and ANNs learn?
>• Are (artificial) neural networks trained in a way to maximize

information flow?

> Are there analogies between ANNs and BioNNs?
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Channels

X~p(x) Channel: p{y\x} y

How much information can you get across a noisy channel?

H[X) =-Y^ p(x,) logp(x,) entropy of X
/

H(Y \X) = -^p(x,,yj)\ogp(x/\yj) conditional entropy
77 of X given Y

/(X; Y) = H(Y) -H(Y\X) mutual information
= H(X) - H(X | Y) between X and V

C = max /(X; V) capacity of the channel
p(x)
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Interpretation

H(X)

H(Y\X)

/(X; Y)

c

.:•-{•«

Entropy
uncertainty about the outcome of X

Conditional entropy
uncertainty about Y when X is given

Mutual information

reduction in uncertainty about X when Y is given
amount of information about X provided by Y.

Capacity
maximum amount of information about X

provided by Y over all input distributions p(X)
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Example: Binary Symmetric Channel (BSC)
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Mutual Information:

/(X; Y) = H(po(l - e) + Pi£, £po + (l - e)pl) - H(e. l - e)

The maximum of /(X; Y) over all input distributions (po,Pl) is
attained at the uniform distribution (p^,p^) = (0.5,0.5).

Capacity:

m?^

C = 1+(1 -E) log2(l - 6) + £ lQg2 £
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Example: Binary Symmetric Channel (BSC)
Capacity as a function of the error probability e:

CBSC(£) =l+(l-e) log2(l - e) + £ log2 £)
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Example: Gaussian Channel (AWGN)

x —— ^+) —— ^ Y=X+W

Average power constraint: E[X2] $ M

Noise distribution is zero-mean Gaussian:

W ~ fw(x) = ^ exp ( - x2/2<72), x € :
Capacity:

C= Jln (l + M/<72) = ^ ln(l + S/VR)
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Cortical Neural Networks
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Me u ro scientists have constructed a network map of connections between cortical neurons, traced from a 100
terabytes 3D data set. The data were created by an electron microscope in nanoscopic detail, allowing every one of
the "wires" to be seen, along with their connections. Some of the neurons are color-coded according to their
activity patterns in the living brain, (credit: Clay Reid, Alien Institute; Wei-Chung Lee, Harvard Medical School;
Sam Ingersoll, graphic artist)
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A Typical Cortical Neuron

axon

n hillokaxo

body

dendritic tree
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> The axon branches to
contact other neurons.

^ A dendritic tree collects

input from other neurons.
^ Axons contact dendritic

trees at synapses and inject
spikes of activity.

^ An axon hillock generates
outgoing spikes whenever
enough charge has flowed in
at synapses to depolarize
the cell membrane.
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Synapses Synapse

s
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^ When a spike travels along an axon and arrives at a synapse,
vesicles of a transmitter chemical are released.

> The transmitter molecules diffuse through the synaptic cleft
and bind to receptor molecules in the membrane of the
post-synaptic neuron.

> This opens up holes that allow specific ions to cross.
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Synapses
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Image Credits: Inside SCIENCE, Andrii Vodolazhskyi
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Synapses Synapsi

e
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^ The effectiveness of the synapse can be changed by
> varying the number of vesicles of the transmitter
> varying the number of receptor molecules

> Synapses are slow, but
^ they are very small and very low-power
^ they adapt using locally available signals
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blow (most people think) the brain works

^ Each neuron receives input from other neurons
> A few neurons are connected to receptors.
> Neurons use spikes to communicate.

> The effect of each input line on the neuron is controlled by
synaptic weights

> Weights can be positive or negative.

> The synaptic weights adapt so that the whole network learns
to perform useful computations

> Recognizing objects, understanding language, making plans,
controlling the body

> Humans have about 1011 neurons each with about 104
weights

> Computations in parallel in a short time, huge bandwidth
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Idealizing Neurons

Substitute spikes by real values x;, model intensities by weights w;.

dendritic

W-^ • X

m,. r,

mm^

y=Q{ i^wi'xi.

What types of activation
functions Q are appropriate?

l-.Ui^it h.i:^l;..! 18

Linear Neurons

> First compute a weighted sum of the inputs.
> Send out a linear transformation of the input.
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y O(^w;x;), (?(z)=az+fc
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Rectified Linear Neurons

> First compute a weighted sum of the inputs.
> Send out a rectified linear function of the weighted sum.

E. w. .Ti

y

Q /

(?(^w;x;), (?(z)

y

0, if z < 0

z, if z >0
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Censoring Neurons

^ First compute a weighted sum of the inputs.
> Send out a censored linear function of the weighted sum.

Eiw«:r>

y »(SW; X, ) ,
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Q
y

0, if z <0
Q(z)={z, if0^z<l

.1, if z > l
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Binary Threshold Neurons
McCulloch-Pitts (1943) (influenced Von Neumann)

> First compute a weighted sum of the inputs.

> Send out a fixed size spike of activity if the weighted sum
exceeds a threshold q.

E,w. xi
Q

v

y (?(^»/;x;), (?(z)=

y

0, \fz<q

l, \fz>q
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Sigmoid Neurons

> First compute a weighted sum of the inputs.
>• Send out a sigmoid function of the weighted sum.

£,"'^i il

y ;<?(EW-X-)' <?(z)=i^-zeR

> The logistic function with convenient derivatives
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A Feed Forward Classification ANN
Data

y x
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yTi Tn-1 T.
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Information is passed from input X to output Y layer by layer.
The network forms a sequence of consecutive channels:

y,X,Ti,...,Tn_i,Tn,y (a Markov chain)
:H
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Naftali Tishby's Experiments
0.7

0.6

0.5

/(T;;r) ^
£»

0.2

0.1

Num of epochs - 3999

'X

„^—^—^—^—^_

/

S6 7 B 9

/(X;T,)

When optimizing parameters of the DNN
• /(X; Tj) first increases, then decreases,
• /(Tj; Y) tends to its max with the number of iterations.
S[_
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Modeling ANNs

An ANN is specified by weights W< and biases b< and the recursion

T(=(?(W(T<_i+b<), £=l,...,n.

Once i9 = (W<,b()<=i „ is fixed an ANN is described by a
function

Input X to an ANN is modeled as a random variable (X, Y),

X e R" with class label Y e {0,1,... ,K-1}

Y = c(X) may be a function of X or noisy with additional random
effects.
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Modeling ANNs
An ANN decides about the class label of input X as

Y = g,(X)
Of course it may happen that V / V.
Expected error = test error

e= R(g^) ^ P(Y ^Y)

Training set are independent samples of (X, Y)

5={(xi,yi),...,(x„,yn)}

Training error

Rto)=^l(^(x,)/y)=^l(y/y)
nw"^y

/=1

r;;

;=1
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An Information Theoretic Approach

x

yY

w(x)

Data
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An Information Theoretic Approach

Consider mutual information

1(Y; Y) = H(Y) - H(Y \ Y) - H(Y \ X)
=0

=/(x;y)-H(y| Y)

The ANN'S goal when learning: (truly ?)

maximize 1{Y; Y) over i9

Hence, /(X; V) should be large and H(Y \ Y) be small.

Observe the empirical behavior of these quantities during training of
three ANNs. Estimate the joint distribution of (Y, Y) by its empirical
counterpart and from this the above quantities.
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Empirical Studies

Spirals (own test example):
50.000 training samples
2.000 test samples

MNIST (handwritten digits):
55.000 training images
10.000 test images

CIFAR-10 (images):
50.000 training images
10.000 test images
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Empirical Study: Spirals

1(Y;Y)=1(X;Y)-H(Y I Y)

Fully connected ANN of 4 hidden layers with five neurons each
trained on the spirals data set.

Activation function: rectified linear
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Empirical Study: Spirals

l(Y;Y)=l(y.;Y)-H(Y\ Y)

Fully connected ANN of 4 hidden layers with five neurons each
trained on the spirals data set.

Activation function: sigmoid
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Empirical Study: MNIST

/(y;y-)=/(x;y)-H(r| Y)

Convolutional network LeNet-5,

Activation function: rectified linear
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Empirical Study: MNIST

/(y;y-)=/(x;y-)-H(Y-| Y)

Convolutional network LeNet-5,

Activation function: sigmoid
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Empirical Study: CIFAR-10

/(y;y)=/(x;y-)-H(y| Y)

Convolutional ANN DenseNet-100 (100 layers)

¥1-'^ 1-1-1
Activation function: rectified linear
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Expected Error and Conditional Entropy

Recall the expected error or test error

£=/?(^)-P(r^Y)

Theorem

^x{H[Y\Y),H(Y\Y)}<^(R(g,)-)
where

V(x) = x log(K - l) - x log(x) - (l - x) log(l - x).

Proof. Fane's inequality,
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Empirical Study: Spirals and MNIST
Spirals (own ANN, activation function: tanh)
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MNIST (LeNet-5'activation function ReLU) £
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> Noisy training data
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System Model - Including Noise
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System Model - Including Noise

y z
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The expert determining class labels may be error prone.
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System Model - Including Noise
£
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Data

The expert determining class labels may be error prone.

fS^ l.,.,., .,;:.„„:. I..,.,.... T...„ ::.,.„. 38

Noisy Training Data

Assume Y = c(X) e {0,1,. ..K- 1} is the true class label of X.
The observed class label is noisy as

y=(Y'+ß)mod/<=y©ß,

with B an independent random variable attaining values in

Theorem

Assume that a neural network is trained with noisy labels Y. Then

e=/?to)><r(w(ß))

where (!>(•) is the inverse of V on [0,1 - -^].

;K, 39

Noisy Training Data
Special case:

P(ß = /):
f l-p, if/=0
[^, if/=l,.,/<-l

x

y Y Y

A
9<(X)

A

Data
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Noisy Training Data

In this case,

H(B} = Ai,;n(p) + p \os(K - l) = y/(p),

/?(^)^<i5Wp))=p

.3-i")l
'.:-!S?fY 4l

Noisy Training Data

In this case,

H(ß)=Ab;n(p)+plog(K-l)=vU(p),

Rto)><t>(0'(p))=p

and as a surprise ...

Theorem

Let V= Y-eß and p<l-^-. IfR(^) = P(y ^ V) =p (the
lower bound for the test error is achieved) then

P(Y = V) = l.
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Noisy Training Data
Theorem

Let V be uniformly distributed. If ff(^) = P(y^ r) =p, then

l(X;Y)=H(Y)=\ogK
H(Y\Y)^^(p)

l(Y;Y)=\ogK-^l(p)

MNIST (LeNet-5, activation function ReLU)
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Noisy Training Data - Animation
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Noisy Training Data - Animation
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Outlook - Markovian Structures

Parameters •ön during training epochs with pure gradient descent
form a Markov chain (MC).

•On = f('Ön-l,Tn) with i.i.d. training data Tn.

However,

yW=^„,x), n e N
is not a MC because of strong coupling. Consider instead a
decoupled version

Yn = g-(l?n,Xn) With i.i.d. input data Xn.

V„ is a hidden Markov chain (HMC) with

H(Yn)=H(YW).

mnw^
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Outlook - Markovian Structures

Theorem

Let the MC tfn ~ q„ have stationary distribution q. Then

log/<>H(Y„)>log/<-D(q„||q).

mlm.^
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Outlook - Markovian Structures

Theorem

Let the MC i9„ ~ q„ have stationary distribution q. Then

log/<>H(y-„)>logK-D(qn||q).

Digging deeper into the Markovian structure of ANNs ...
Consider the joint distribution of (Vn, Vn) as marginal distribution
of a MCZ„=(y„,yn).

pZo

1 0 ••• 0^

^ 0 ... 0

^ ••• 0

0 ... ^
pZoo

Construct a 2-dim MC with the LHS as initial and the RHS as
limit distribution.
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Outlook - Markovian Structures

MNIST (LeNet-5, activation function ReLU)

Experiments Markov Process
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Thanks for your attention!

balda/behboodi/mathar@ti. rwth-aachen.de
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Quotations

Graham Taylor about developing ANN mimicking visual abilities of
drosophila:

"The approach of pairing deep learning models with nervous
systems is incredibly rich. It can tell us about the models, about
how neurons communicate with each other, and it can tell us
about the whole animal. That's sort of mind blowing. And it's
unexplored territory."

https://www.cifar.ca/cifarnews/2018/10/25/building-a-fly-brain-in-a-
computer
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