2. Alirezaei

\[H(X) = - \sum_{i=1}^{m} p_i \cdot \log p_i \]
\[\text{Prob}(X = x_i) = p_i, \quad i = 1, \ldots, m \]

Theorem 2.1.8.

a) \(0 \leq H(X) \leq \log m \)

"=" in (i) \(\Leftrightarrow \) \(X \) has a single tone dist., i.e.,
\[\exists x_i : \text{Prob}(X = x_i) = 1 \]

"=" in (ii) \(\Rightarrow \) \(X \) is uniformly dist., i.e.,
\[\text{Prob}(X = x_i) = \frac{1}{m}, \quad \forall i = 1, \ldots, m \]

b) \(0 \leq H(X | Y) \leq H(X) \)

"=" in (i') \(\Leftrightarrow \) \(\text{Prob}(X=x_i | Y=y_j) = 1 \forall i,j \)

with \(\text{Prob}(X=x_i, Y=y_j) > 0 \), i.e.,
\(X \) is totally dependent on \(Y \).

"=" in (ii') \(\Rightarrow \) \(X, Y \) are stock. independent.

c) \(H(X) \leq H(X, Y) \leq H(X) + H(Y) \)

"=" in (i) \(\Leftrightarrow \) \(Y \) is totally dependent on \(X \)

"=" in (ii) \(\Rightarrow \) \(X, Y \) are stock. independent.

d) \(H(X | Y, Z) \leq \text{min} \{ H(X | Y), H(X | Z) \} \)
Proof:

a) (ii) \[H(K) = - \sum_{i=1}^{m} \Pi_i \cdot \log \Pi_i = \sum_{i=1}^{m} \Pi_i \cdot \log \frac{\Pi_i}{1} \]

Lemma 2.1.5

\[\leq \log \left(\sum_{i=1}^{m} \Pi_i \cdot \frac{1}{\Pi_i} \right) \]

\[= \log (\sum_{i=1}^{m} 1) = \log m \]

(c) obvious

b) Exercise

c) (i) By the chain rule, Th. 2.1.5.:

\[H(X, Y) = H(X) + H(Y | X) \geq H(X) \]

equality follows from \(\leq \) b) (ii).

(ii) \(0 \leq H(X) - H(X | Y) \leq H(Y) - [H(X, Y) - H(Y)] \)

\[\Rightarrow H(X) + H(Y) \geq H(X, Y) \]

with equality from b) (i).

d) Analogous to b) (ii).

Ref. Cover & Thomas, Math.

Thinking the Future
Zukunft denken
Definition 2.1.9.

Let X, Y, Z discrete r.v.

$$I(X; Y) = H(X) - H(X | Y)$$
$$= H(Y) - H(Y | X)$$

is called mutual information or synergy of X and Y.

$$I(X; Y | Z) = H(X | Z) - H(X | Y, Z)$$

is called conditional mutual information of X and Y given Z.

Interpretation: $I(X; Y)$ is the reduction in uncertainty about X when Y is given or the amount of information about X provided by Y.

see. Figures on the next page.

$$I(X; Y) = H(X) - H(X | Y)$$
$$H(Y | X) = H(X, Y) - H(X)$$
$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$
Thinking the Future
Zukunft denken
Note: by The 2.1.8 b) $\Sigma(X;Y) \geq 0$.

By definition it holds that:

$$\Sigma(X;Y) = - \sum_{i,j} p(x_i, y_j) \log p(x_i) + \sum_{i,j} p(x_i, y_j) \log p(x_i | y_j)$$

$$= - \sum_{i,j} p(x_i, y_j) \log p(x_i) + \sum_{i,j} p(x_i, y_j) \log p(x_i | y_j)$$

$$= \sum_{i,j} p(x_i, y_j) \log \frac{p(x_i | y_j)}{p(x_i)}$$

$$= \sum_{i,j} p(x_i, y_j) \log \frac{p(x_i | y_j)}{p(x_i) \cdot p(y_j)}$$

which shows symmetry in X and Y.

Example 2.1.10. Binary symmetric channel (BSC)

Symbol error with probability ϵ, $0 \leq \epsilon \leq 1$.

Thinking the Future
Zukunft denken
Hence:

\[P(Y=0 \mid X=0) = P(Y=1 \mid X=1) = 1-\varepsilon \]

\[P(Y=0 \mid X=1) = P(Y=1 \mid X=0) = \varepsilon \]

Assume that input symbols are uniformly distributed: \(P(X=0) = P(X=1) = \frac{1}{2} \).

Then for the joint distributions:

\[P(X=0, Y=0) = P(Y=0 \mid X=0) \cdot P(X=0) = (1-\varepsilon) \cdot \frac{1}{2} \]

\[P(X=1, Y=0) = P(Y=0 \mid X=1) \cdot P(X=1) = \varepsilon \cdot \frac{1}{2} \]

\[P(X=0, Y=1) = P(Y=1 \mid X=0) \cdot P(X=0) = (1-\varepsilon) \cdot \frac{1}{2} \]

\[P(X=1, Y=1) = P(Y=1 \mid X=1) \cdot P(X=1) = \varepsilon \cdot \frac{1}{2} \]

Further:

\[P(X=0 \mid Y=0) = \frac{P(X=0, Y=0)}{P(Y=0)} = 1-\varepsilon \]

\[P(X=1 \mid Y=0) = 1-\varepsilon \]

\[P(X=0 \mid Y=1) = P(X=1 \mid Y=0) = \varepsilon \]
For \(\log = \log_2 \)

\[\Rightarrow H(K) = H(Y) = -\frac{1}{2} \cdot \log \frac{1}{2} - \frac{1}{2} \cdot \log \frac{1}{2} = 1 \text{ bit} \]

\[H(K,Y) = 1 - (1-\varepsilon) \cdot \log (1-\varepsilon) - \varepsilon \cdot \log \varepsilon \]

\[H(K|Y) = -(1-\varepsilon) \cdot \log (1-\varepsilon) - \varepsilon \cdot \log \varepsilon \]

\[0 \leq I(K;Y) = 1 + (1-\varepsilon) \cdot \log (1-\varepsilon) + \varepsilon \cdot \log \varepsilon \leq 1 \]

Def. 2.1.11 (Kullback-Leibler divergence)

Let \(p = (p_1, \ldots, p_m) \), \(q = (q_1, \ldots, q_m) \) be stochastic vectors.

\[D(p \parallel q) = \sum_{i=1}^{m} p_i \cdot \log \frac{p_i}{q_i} \]

is called KL divergence between \(p \) and \(q \) (or relative entropy).

\(D(p \parallel q) \) measures the divergence (distance, dissimilarity) between distributions \(p \) and \(q \). However, it is not a metric, neither symmetric nor satisfies the triangle inequality.

It measures how difficult it is for \(p \) to pretend it were \(q \).
Theorem 2.1.12.

a) \(D(p \| q) \geq 0 \) with \(= \) if \(p = q \).

b) \(D(p \| q) \) is convex in the pair \((p, q) \).

c) \[I(K; Y) = D((p(K, Y)_{ii} || (p(K, Y)_{ij}))) \]

proof.

a) By definition and Cor. 2.1.8.

b) Use the log-sum inequality Lemma 2.1.7.

Let \(p, r, \) and \(q, s \) be stochastic vectors.

For all \(i = 1, \ldots, m \), it holds that

\[
\lambda \frac{r_i}{q_i} + (1-\lambda) \frac{s_i}{q_i} \leq \frac{\lambda r_i}{q_i} + (1-\lambda) \frac{s_i}{q_i}
\]

Summing over all \(i = 1, \ldots, m \), it follows for all \(\lambda \in [0,1] \)

\[
D(\lambda p + (1-\lambda) q) \leq \lambda D(p \| q) + (1-\lambda) D(q \| p)
\]

c) By definition.

Note: \(D(p \| q) \neq D(q \| p) \)