Proof of Th. 3.5:

(a) g.m.d. code with codeword lengths n_1, \ldots, n_m.
Let $r = \max \{ n_i \}$ max. codeword length.

$\beta = \{ \beta_{ij} | n_i = l \}$ no. of codewords of length $l \in \mathbb{N}$, $l \leq r$

It holds, $k \in \mathbb{N}$

$$\left(\sum_{j=1}^{m} d^{-n_j} \right)^k = \left(\sum_{l=1}^{r} \beta_{l} d^{-l} \right)^k = \sum_{l=k}^{k \cdot r} y_{l} \cdot d^{-l}$$

with

$$y_{l} = \sum_{1 \leq i_1 < \ldots < i_k \leq r} \beta_{i_1} \ldots \beta_{i_k} \quad l = k \cdot \ldots \cdot k \cdot r$$

y_{l}: no of source words of length k which have codeword length l.

d^{l}: no of all codewords of length l.

Since g is m.d., each codeword has at most one sourceword. Hence

$$y_{l} \leq d^{l}$$

$$\left(\sum_{j=1}^{m} d^{-n_j} \right)^k \leq \sum_{l=k}^{k \cdot r} d^{l} d^{-l} = k \cdot r - k + 1 \leq k \cdot r \quad \forall k \in \mathbb{N}.$$

Further

$$\sum_{j=1}^{m} d^{-n_j} \leq (k \cdot r)^{\frac{1}{k} \to 1} \quad (k \to \infty)$$

so that

$$\sum_{j=1}^{m} d^{-n_j} \leq 1.$$
Huffman are optimal, i.e., have shortest average codeword length. We consider the case $d=2$.

Lemma A.

Let $X = \{x_1, \ldots, x_m\}$ with probabilities $p_1 \geq \ldots \geq p_m > 0$. There exists an optimal binary prefix code g with codeword lengths η_1, \ldots, η_m such that

1. $\eta_1 \leq \ldots \leq \eta_m$
2. $\eta_{m-1} = \eta_m$
3. $g(x_{m-1})$ and $g(x_m)$ differ only in the last position.

Proof. Let g be an optimum prefix code with η_1, \ldots, η_m.

(i) If $p_i > p_j$ then necessarily $\eta_i \leq \eta_j$, $1 \leq i < j \leq m$. Otherwise exchange $g(x_i)$ and $g(x_j)$ to obtain a code g' with

$$\bar{w}(g') - \bar{w}(g) = p_i \eta_j + p_j \eta_i - p_i \eta_i - p_j \eta_j$$

$$= (p_i - p_j)(\eta_j - \eta_i) < 0$$

contradicting optimality of g.

(ii) There is an opt. prefix code \tilde{g} with $\eta_1 \leq \ldots \leq \eta_m$. If $\eta_{m-1} < \eta_m$ delete $\eta_m - \eta_{m-1}$ positions of $g(x_m)$ to obtain a better code.

(iii) If $l_1 \leq \ldots \leq l_{m-1} = l_m$ for an opt. prefix code g, and $g(x_{m-1})$ and $g(x_m)$ differ by more than the last position, delete the last position in both to obtain a better code. \(\square \)
Lemma B.
Let \(X = \{x_1, \ldots, x_m\} \) with prob. \(p_1 \geq \ldots \geq p_m > 0 \).
\(X' = \{x'_1, \ldots, x'_{m-1}\} \) with prob. \(p'_i = p_i, \ i = 1, \ldots, m-2 \)
\[p'_{m-1} = p_{m-1} + p_m \]

\(g' \) an opt. prefix code for \(X' \) with

codewords \(g'(x'_i), i = 1, \ldots, m-1 \).

Then
\[g(x_i) = \begin{cases} g'(x'_i), & i = 1, \ldots, m-2 \\ g'(x'_{m-1}), & i = m-1 \\ g'(x'_{m-1}), & i = m \end{cases} \]
is an optimal prefix code for \(X \).

Proof. Denote codeword lengths \(n_i, n'_i \) for \(g, g' \) respectively.

\[\bar{n}(g) = \sum_{j=1}^{m-1} p_j n_j + (p_m + p_{m-1}) (n_{m-1} + 1) \]
\[= \sum_{j=1}^{m-2} p_j n'_j + p_{m-1} (n'_{m-1} + 1) \]
\[= \sum_{j=1}^{m-1} p_j n'_j + p_{m-1} + p_m = \bar{n}(g') + p_{m-1} + p_m \]

Assume \(g \) is not optimal for \(X \). There exists an opt. prefix code \(c' \) with properties (i)-(iii) of Lemma and
\[\bar{n}(c') < \bar{n}(g) \]
Set
\[h'(x_j) = \begin{cases} h(x_j), & j = 1, \ldots, m-2 \\ L h(x_{m-1}) \end{cases} \]
by deleting the last position of \(h(x_{m-1}), j = m \)

Then \(\bar{n}(h') + p_{m-1} + p_m = \bar{n}(h) < \bar{n}(g) = \bar{n}(g') + p_{m-1} + p_m \)

Hence \(\bar{n}(h') < \bar{n}(g') \) contradicting optimality of \(g' \).