Lehrstuhl für Theoretische Informationstechnik

Homework 12 in Cryptography I Prof. Dr. Rudolf Mathar, Michael Naehrig 28.01.2008

Exercise 34:

RNTHAACHE

Consider the following cryptosystem. Message space \mathcal{M} , ciphertext space \mathcal{C} and key space \mathcal{K} all coincide with the space of bit sequences of length 8, i.e. $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^8$.

A message $m = m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8$ is encrypted with the key $k = k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8$ as follows. First, message and key are divided into halves of 4 bits each:

$$m = L_0 R_0, \ k = K_0 K_1.$$

Encryption e now works in 2 rounds:

$$L_1 = R_0, R_1 = f(L_0, K_0),$$

 $L_2 = R_1, R_2 = f(L_1, K_1).$

The cryptogram is $e(m,k) = c = L_2 R_2$. The function $f : \{0,1\}^8 \to \{0,1\}^8$ which is used for encryption is defined as follows:

$$f(L_i, K_i) = S(L_i) \oplus K_i,$$

where S is the permutation cipher given by the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$.

(a) Show that the cryptosystem has perfect secrecy, if keys are chosen with equal probability.

Hint: First of all find a closed formula for e.

- (b) Encrypt m = 01011100 with the key k = 10010001.
- (c) Is it possible to use the same algorithm with a different key for decryption? If so, which key must be taken?

Exercise 35.

For primes p with $p \equiv 3 \pmod{4}$ using Euler's criterium we have an efficient procedure, to compute square roots modulo p. For primes p with $p \equiv 5 \pmod{8}$ there exists also a deterministic algorithm, to compute square roots modulo p:

Input: A prime p such that $p \equiv 5 \pmod{8}$ and a quadratic residue a modulo p **Output:** Both square roots of a modulo p

 $d \leftarrow a^{\frac{p-1}{4}} \mod p$ if (d = 1) then $r \leftarrow a^{\frac{p+3}{8}} \mod p$ end if if (d = p - 1) then $r \leftarrow 2a(4a)^{\frac{p-5}{8}} \mod p$ end if return (r, -r)

- a) Show, that 1 and p-1 are the only values which d can assume.
- b) Show, that the algorithm indeed computes both square roots of a modulo p, by using that 2 is a quadratic non-residue modulo p.

Exercise 36:

Alice's public RSA-key is (n, e) = (4819, 2753). Sign the document m with hash h(m) = 117 in the name of Alice.

Exercise 37:

Bob's public ElGamal-key is (p, a, y) = (101, 2, 11).

- (a) Determine the plain text of the message $(c_1, c_2) = (64, 79)$ which was sent to Bob without computing Bob's private key.
- (b) Now determine Bob's private ElGamal-key.

Exercise 38.

The RSA-system is based on the ring $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/(pq)\mathbb{Z}$ for two primes p and q. Describe, how RSA can be carried over to the ring $\mathbb{F}_2[X]/(fg)\mathbb{F}_2[X]$. For this let f and g be two irreducible polynomials in $\mathbb{F}_2[X]$ such that $\deg(f) + \deg(g) = 2048$. Answer the following questions:

- a) How can a message $m \in \{0,1\}^{2048}$ be represented as an element of $\mathbb{F}_2[X]/(fg)\mathbb{F}_2[X]$?
- b) How must public and private keys of a user A be chosen?
- c) Determine the encryption and decryption functions?

Additionally answer the following question:

d) Does the constructed system have comparable security to RSA? Give reasons for your answer!

Hint: It holds $|(\mathbb{F}_2[X]/(fg)\mathbb{F}_2[X])^*| = (2^{\deg(f)} - 1)(2^{\deg(g)} - 1).$