Exercise 4. Consider the following function:

\[E : \{0, 1\}^4 \rightarrow \{0, 1\}^4, \quad m_1m_2m_3m_4 \mapsto E(m_1m_2m_3m_4) = c_1c_2c_3c_4, \]

where \(c_1, c_2, c_3, c_4 \) are calculated as follows:

\[C = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = A \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix} + B. \]

The matrices \(A \) and \(B \) are of the form

\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{Z}_{2}^{2 \times 2} \]

and

\[B = \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix} \in \mathbb{Z}_{2}^{2 \times 2}. \]

The function \(E \) can be used to construct an encryption function \(e \) for a cryptosystem with \(X = Y = \{0, 1\} \). In this system each block of 4 Bits is encrypted using the function \(E \). The key of the system is \((A, B)\).

(a) Which properties do the matrices \(A \) and \(B \) have to fulfill in such a system? How many pairs \((A, B)\) of the given form exist with these properties?

(b) Encrypt the Bitstring

\[1001101111000100 \]

with the key \(A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \) and \(B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

Exercise 5.

(a) Prove the following statement:

A matrix \(A \in \mathbb{Z}_m^{n \times n} \) is invertible, if and only if \(\gcd(m, \det(A)) = 1 \).

(b) Is the following matrix invertible? If yes, compute the inverse matrix.

\[M = \begin{pmatrix} 7 & 1 \\ 9 & 2 \end{pmatrix} \in \mathbb{Z}_{26}^{2 \times 2}. \]

Exercise 6. Show that the set of regular \(n \times n \) matrices over a field \(K \) together with the usual matrix multiplication is a group. Is it an abelian group?