Solution to Exercise 31.

(b) One message \(m_1 = 567 \) is given. We perform a known-plaintext attack.

Let \(c_1 = (c_1, c_2) \) and \(c_2 = (c_3, c_4) \).

The session key \(k \) is the same, since the ciphertexts \(c_1 \) and \(c_3 \) are congruent:

\[
c_1 \equiv c_3 \equiv a^k \pmod{p}.
\]

With \(y = a^x \pmod{p} \), \(K \) is computed by:

\[
K = y^k \equiv a^{zk} \pmod{p},
\]

in both cases.

To reveal \(m_2 \), we need:

\[
m_2 \equiv c_4 K^{-1} \pmod{p}.
\]

For known \(m_1, c_2 \) and \(p \) we can compute \(K^{-1} \):

\[
m_1 \equiv K^{-1} c_2 \pmod{p}
\]

\[
\iff K^{-1} \equiv c_2^{-1} m_1 \pmod{p},
\]

And we finally get:

\[
m_2 \equiv c_4 c_2^{-1} m_1 \pmod{p}.
\]

For the given values, we have:

\[
c_2^{-1} \equiv 347 \pmod{3571},
\]

\[
m_2 \equiv 1393 \cdot 347 \cdot 567 \pmod{3571}
\]

\[
\equiv 678 \pmod{3571}.
\]