Problem 1.

a) What does a Friedman Test decide?

b) Compute the expectation of the index of coincidence over the alphabet \(\mathcal{A} = \{A, B, C\} \) if the sequence of characters in the ciphertext is independent and identically distributed and each character is uniformly distributed.

Consider a Vigenère cipher with message space \(\mathcal{M} = \mathcal{A}^n, n \in \mathbb{N} \), and key space \(\mathcal{K} = \mathcal{A}^w, w \in \mathbb{N}, \) with \(w \mid n \). The messages and keys are both uniformly distributed.

c) Why has the cryptosystem perfect secrecy for \(w = n \)? Why has it no perfect secrecy for \(w < n \)?

d) Estimate the index of coincidence \(I_c \) over the alphabet \(\mathcal{A} \) for the following ciphertext \(c \) of length \(n = 24 \):
\[
c = \text{CAAABBCACBCABACAABCCCACA}.
\]

e) Assume the characters of the plaintext occur with the following frequencies: \#A = 16, \#B = 5, and \#C = 3. Determine the key \(k \) of the Vigenère cipher and decrypt the ciphertext \(c \) for \(w = 4 \) by identifying the frequencies from the ciphertext.

f) State four more classical cryptosystems from the lecture.

Problem 2.

A key stream \(\mathbf{z} = (z_i)_{i \in \mathbb{N}} \) is generated from a key \(\mathbf{k} = (k_1 \ldots k_q) \) by the following recursion:
\[
\begin{align*}
z_i &= k_i, & 1 \leq i \leq q, \\
z_i &= \sum_{j=1}^{q} p_j z_{i-j}, & q < i.
\end{align*}
\]

All computations are in the finite field \(\mathbb{F}_2 \). Consider the following linear feedback shift register (LFSR) for stream ciphers to generate a key stream:
a) Derive the feedback polynomial \(p(x) = 1 + \sum_{i=1}^{q} p_i x^i \) of the LFSR given in the figure above. Show that the polynomial \(p(x) \) is primitive\(^1\) in \(\mathbb{F}_2 \) to ensure that the LFSR has the maximal period.

The plaintext symbols \(m_i \) are encrypted into the ciphertext symbols \(c_i \) as follows:

\[c_i = z_i \oplus m_i. \]

b) A key \(k \) is called weak, if \(c = m \) for all \(m \in \mathcal{M} \) holds. Find a weak key for the given LFSR.

c) Encrypt \(m = (m_1 \ldots m_{10}) = (0100101101) \) with the key \(k = (k_1 k_2 k_3) = (100) \).

d) What is the length of the (maximal) period of \(z \)? How many zeros and ones occur within one period?

Now consider the following key stream generator with three independent LFSRs of period lengths \(l_1, l_2, l_3 \):

```
\[ \begin{aligned}
\text{LFSR}_1 & \quad a_i \\
\text{LFSR}_2 & \quad b_i \\
\text{LFSR}_3 & \quad c_i
\end{aligned} \]
```

Answer the following questions without giving an explicit proof:

e) What is the period length of the sequence of triples \(((a_i, b_i, c_i))_{i \in \mathbb{N}} \) for the key stream generator? What are the minimal and maximal period lengths? How should \(l_1, l_2, l_3 \) be chosen to maximize the period length?

The function \(f \) is defined by:

\[y_i = f(a_i, b_i, c_i) = (a_i \land b_i) \oplus (c_i \land c_i). \]

f) Compute the probabilities \(\Pr(b_i \mid y_i) \) assuming that \((a_i, b_i, c_i) \) is uniformly distributed over \(\mathbb{F}_2^3 \). Which estimate for \(b_i \) ensures a success probability of \(\frac{3}{4} \), if \(y_i \) is given?

Problem 3.

In the following an RSA cryptosystem with public key \((n, e) \) is considered.

a) Does a valid RSA public key exist with \(e = 2 \)? Substantiate your answer.

The message \(m \) is encrypted by means of the public key \((n, e) = (4819, 3343) \) resulting in the cryptogram \(c = 1219 \).

b) Factorize \(n \) and determine the private key.

c) What is the original message \(m \)?

\(^1\) A polynomial \(p(x) \) of degree \(q \) is called primitive if and only if the smallest \(n \in \mathbb{N} \) for which \(p(x) \) divides the polynomial \(x^n + 1 \) is \(n = 2^q - 1 \).
In an RSA cryptosystem the public key \((n', e') = (391, 7)\) and the corresponding private key \(d' = 151\) are known.

d) Compute the prime factors \(p\) and \(q\) of \(n'\) by means of the following steps:

i) Determine a multiple \(x\) of \(\varphi(n')\), i.e., an \(x \in \mathbb{Z}\) with \(x = k \cdot \varphi(n')\) for a \(k \in \mathbb{N}\).

ii) Compute the prime factorization of \(x\).

iii) Use the prime factorization to determine \(k, p,\) and \(q\).