Problem 11. \textit{(Goldwasser-Micali)} Using the Goldwasser-Micali cryptosystem, decrypt a ciphertext. Start by finding the cryptosystem’s parameters.

\begin{itemize}
 \item[a)] Find a pseudo-square modulo \(n = p \cdot q = 31 \cdot 79\) by using the algorithm from the lecture notes. Start with \(a = 10\) and increase \(a\) by 1 until you find a quadratic non-residue modulo \(p\). For \(b\), start with \(b = 17\) and proceed analogously.
 \item[b)] Decrypt the ciphertext \(c = (1418, 2150, 2153)\).
\end{itemize}

Problem 12. \textit{(decipher Blum-Goldwasser)} Bob receives the following cryptogram from Alice:

\[c = (10101011100001101000101110010111100110111000, x_{t+1} = 1306)\]

The message \(m\) has been encrypted using the Blum-Goldwater cryptosystem with public key \(n = 1333 = 31 \cdot 43\). The letters of the Latin alphabet \(A, \ldots, Z\) are represented by the following 5 bit scheme: \(A = 00000, B = 00001, \ldots, Z = 11001\). Decipher the cryptogram \(c\).

Remark: The security requirement to use at most \(h = \lfloor \log_2 (\log_2 (n)) \rfloor \) bits of the Blum-Blum-Shub generator is violated in this example. Instead, 5 bits of the output are used.

Problem 13. \textit{(chosen-ciphertext attack on Blum-Goldwasser)} Assume that an attacker has access to the decoding-hardware of the Blum-Goldwater cryptosystem computing the message \(m\) when fed with a cryptogram \(c\). The decoded output is not the value \(x_0\), but only the message \(m\).

Further assume that it is possible to compute\(^1\) a quadratic residue modulo \(n\), when knowing the last \(h = \lfloor \log_2 (\log_2 (n)) \rfloor \) bits of the given quadratic residue.

Show that the given cryptosystem is not secure against chosen-ciphertext attacks.

\(^1\)Assume that a function \(f : \{0, 1\}^h \to \mathbb{Z}_n\) with \(f(b_i) = x_i\), \(1 \leq i \leq t\), exists.