Exercise 6 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-11-28

Problem 17. (basic requirements for cryptographic hash functions) Using a block cipher $E_K(x)$ with block length k and key K, a hash function h(m) is provided in the following way:

Append *m* with zero bits until it is a multiple of *k*, divide *m* into *n* blocks of *k* bits each. $c \leftarrow E_{m_0}(m_0)$ **for** *i* **in** 1..(n-1) **do** $d \leftarrow E_{m_0}(m_i)$ $c \leftarrow c \oplus d$ **end for** $h(m) \leftarrow c$

- a) Does this function fulfill the basic requirements for a cryptographic hash function?
- **b)** Can these requirements be fulfilled by replacing the operation XOR (\oplus) by AND (\odot) ?

Problem 18. (codomain of a hash function) Consider the following hash-function:

 $h: \mathbb{N} \to \mathbb{N}_0, \ k \mapsto \lfloor 10000(k(1+\sqrt{5})/2 - \lfloor k(1+\sqrt{5})/2) \rfloor) \rfloor.$

- a) Determine the upper and lower bounds of the codomain of h.
- **b)** Find a collision for h.

RNTHAACHEN

Problem 19. (CBC and CFB for MAC generation) Both, the CBC mode and the CFB mode, can be used for the generation of a MAC as follows.

- A plaintext is divided into n equally-sized blocks $M_1, ..., M_n$.
- For the CFB-MAC, the ciphertexts are $C_i = M_{i+1} \oplus E_K(C_{i-1})$ for $i = 1, \ldots, n-1$ and $MAC_K^{(n)} = E_K(C_{n-1})$ with initial value $C_0 = M_1$.
- For the CBC-MAC, the ciphertexts are $\hat{C}_i = E_K(\hat{C}_{i-1} \oplus M_i)$ for $i = 1, \ldots, n-1$ and $\widehat{\mathrm{MAC}}_K^{(n)} = E_K(\hat{C}_{n-1} \oplus M_n)$ with initial value $\hat{C}_0 = 0$.

Show that the equivalency $MAC_K^{(n)} = \widehat{MAC}_K^{(n)}$ holds.

Problem 20. (*derive a message validation protocol*) Suppose Alice transmits the following cryptogram to Bob:

$$c = e(m \parallel h(k_2 \parallel m), k_1).$$

Assume that the message m, the shared keys k_1, k_2 , the hash values h(x) and the output of the encryption function have fixed lengths known to Alice and Bob.

- a) Derive a protocol for decryption and message validation used by Bob?
- **b)** Modify the given scheme to construct a similar protocol for a public-key cryptosystem. You may use two private-/public key-pairs (K_1, L_1) and (K_2, L_2) and a session key s used in the hash, which is securely transmitted to Bob within the cryptogram c.
- c) How can an intruder Eve impersonate Alice to Bob in the system of (b)? How could the attack be prevented?