Problem 1. \((A \text{ variant of the Rabin cryptosystem}) \) A prime number \(p \equiv 5 \mod 8 \), a quadratic residue \(a \) modulo \(p \) and the following algorithm are given.

Algorithm 1 SQR: Square roots with \(p \equiv 5 \mod 8 \)

Input: Prime number \(p \) with \(p \equiv 5 \mod 8 \) and quadratic residue \(a \) modulo \(p \)

Output: Square roots \((r, -r)\) of \(a \) modulo \(p \)

\[
d \leftarrow a^{\frac{p-1}{4}} \mod p
\]

\[
\text{if } (d = 1) \text{ then}
\]

\[
r \leftarrow a^{\frac{p+3}{8}} \mod p
\]

\[
\text{end if}
\]

\[
\text{if } (d = p - 1) \text{ then}
\]

\[
r \leftarrow 2a(4a)^{\frac{p-5}{8}} \mod p
\]

\[
\text{end if}
\]

return \((r, -r)\)

\(a)\) Show that the variable \(d \) in algorithm SQR can only take the values 1 or \(p - 1 \).

\(b)\) Suppose that \(2^{\frac{p-1}{2}} \equiv -1 \mod p \) holds. Prove that algorithm SQR computes both square roots of \(a \) modulo \(p \).

A variant of the Rabin cryptosystem uses algorithm SQR and is accordingly defined for prime numbers \(p, q \equiv 5 \mod 8 \) with \(n = p \cdot q \).

The prime numbers \(p = 53 \), \(q = 37 \), and the ciphertext \(c = 1342 = m^2 \mod n \) are given. By agreement the message \(m \) ends on 101 in its binary representation.

\(c)\) Compute the square roots of 17 modulo 53 and 10 modulo 37.

\(d)\) Decipher the message \(m \). You may use \(7 \cdot 53 - 10 \cdot 37 = 1 \) for your computation.

Problem 2. \((\text{Coin Tossing protocols via telephone}) \) This problem deals with several protocols for realizing a coin toss via telephone. The following symmetric cryptosystem is used for realizing coin tossing over the telephone. The protocol actions are as follows:

- \(A \) and \(B \) agree upon a common key \(k \).
- \(A \) chooses a number \(x \), encrypt it as \(y = E_k(x) \), and sends \(y \) to \(B \).
• B guesses, if x is even or odd, and sends his guess to A.
• A sends x to B.

If B has guessed correctly, B wins, otherwise A wins.

a) Which player can always win? Substantiate your answer.

In the following a cryptographic hash function is employed.

b) State the four basic requirements on cryptographic hash functions.

c) Give a protocol for realizing a coin toss which utilizes a cryptographic hash function.

Finally, a protocol for tossing a coin over the telephone based on the factorization problem shall be derived. The protocol starts with:

• A chooses prime numbers p, q with $p, q \mod 4 = 1$ or $p, q \mod 4 = 3$.

d) Complete the protocol.

Problem 3. (Pollard Rho Factoring Method) Consider the following function:

$$E : Y^2 = X^3 + 2X + 6.$$

a) Does E describe an elliptic curve in the field \mathbb{F}_7? Give a reason.

b) Determine all points and their inverses in the \mathbb{F}_7-rational group.

c) What is the order of the group?

It is difficult to obtain the discrete logarithm a of Q to the base P for two points P, Q on an elliptic curve E. A possible approach is the application of the Pollard ρ-factoring method. The idea behind this method is to find numbers $c, d, c', d' \in \mathbb{Z}$ for two given points P, Q on the elliptic curve with $\gcd(d - d', \ord(P)) = 1$ such that the following equation holds:

$$cP + dQ = c'P + d'Q. \tag{1}$$

d) Compute the discrete logarithm a of Q to the base P by means of (1).

An oracle provides the values $c = 2$, $d = 4$, $c' = -1$, $d' = -3$, $P = (4, 1)$, $Q = (1, 3)$, $4Q = (3, 5)$, and $-3Q = (5, 6)$. Assume that P is a generator.

e) Show that equation (1) is fulfilled for these values and compute the discrete logarithm a of $Q = (1, 3)$ to the base $P = (4, 1)$.