

Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 9 - Proposed Solution -Friday, January 15, 2016

Solution of Problem 1

a) In order to break Lamport's protocol we need to compute the $(A, i + 1, w_{i+1})$ given (A, i, w_i) from the previous transmission *i*. Since the computation of A and i + 1 is trivial, we only need to compute the following inverse hash function:

$$w_{i+1} = H^{t-i-1}(w) = H^{-1}(H^{t-i}(w)) = H^{-1}(w_i).$$

If H is a *secret* one-way function, this step is clearly infeasible. However, even for a *public* one-way function, this step is also infeasible, since the computing w_{i+1} and H^{-1} is infeasible given H and w. Hence, using a secret function is not required.

- b) Check if each of the four basic requirements on hash functions is necessary:
 - 1. *H* is easy to compute: Recall: Given $m \in \mathcal{M}$, H(m) is easy to compute. This not required, but still a very useful property to provide an efficient protocol.
 - 2. *H* is preimage resistant: (required \checkmark) Recall: Given $y \in \mathcal{Y}$, it is infeasible to find *m* such that H(m) = y. Otherwise, $w_i = H(w_{i+1})$ could be broken, see a).
 - 3. *H* is second preimage resistant: (required \checkmark) Recall: Given $m \in \mathcal{M}$, it is infeasible to find $m' \neq m$, such that H(m) = H(m'). Otherwise, the attacker would be able to find a w' such that $H(w') = H(w_{i+1})$.
 - 4. H is collision-free:

Recall: It is infeasible to find $m \neq m' \in \mathcal{M}$ with H(m) = H(m'). Although finding an arbitrary collision would indeed break the system, it will affect a random chain of passwords in this scheme with negligible probability.

- c) The discrete logarithm problem is hard to solve in Z_p^{*}: It is hard to determine x in a^x ≡ y mod p for given values of the primitive element a modulo p and y. Lamport's protocol in terms of the discrete logarithm problem is described by:
 - Functions and Parameters: Use the one-way hash-function $H : \{2, ..., p-2\} \to \mathbb{Z}_p^*$ with $w \to a^w \mod p$.

Choose a secret value $w \in \{2, ..., p-2\}$ and a primitive element $a \mod p$. Choose t, the maximal number of identifications. Select the initial value $w_0 = H^t(w)$.

- Protocol steps: Compute next session key H^{t-i}(w) = w_i. Session authentication A → B : (A, i, w_i). B checks if i = i_A and w_{i-1} ≡ a^{w_i} mod p is true. If correct, B accepts, sets i_A ← i_A + 1 and stores w_i for the next session.
- d) Man-in-the-middle attack on Lamport's protocol: Let E intercept the current key w_i from A. E uses it for authentication as A at B. Furthermore, if E gains access to the initial value w and knows the current session number i, the protocol is completely broken.

Solution of Problem 2

a) Claimant Alice (A) wants to prove her identity to verifier Bob (B). This identification is done for a fixed password by comparing its hash value to a stored hash value. The password is sent without protection: $A \xrightarrow{pwd} B$. B calculates h(pwd) and compares it with the stored hash value, to verify the identity of A.

In a *replay attack*, eavesdropper Eve (E) intercepts the password and impersonates A by reusing the password in a later session:

 $\begin{array}{l} A \stackrel{pwd}{\rightarrow} B \mbox{ (plain password transmission)} \\ A \stackrel{pwd}{\rightarrow} E \mbox{ (by intercepting/eavesdropping)} \\ E \stackrel{pwd}{\rightarrow} B \mbox{ (impersonating A)} \end{array}$

Improvement: Instead of revealing the password itself, a time stamp is encrypted with a symmetric (secret) key. By comparing the time stamp with its internal clock, B can verify that the claimant A knows the shared secret key. After authentication, the response is expired and cannot be reused.

Authentication protocol:

 $B \to A : t_A$ (time stamp implicit in internal clock, no challenge necessary) $A \to B : E_K(t_A)$ (response)

Alternatively, the challenge can be made explicit, by taking a random value r_B :

 $B \to A : r_B$ (explicit challenge) $A \to B : E_K(r_B)$ (response)

b) Consider the following authentication protocol:

 $A \to B : r_A \text{ (A challenges B)}$

 $B \to A : E_K(r_A, r_B)$ (B responds to A and challenges A) $A \to B : r_B$ (A responds to B)

In the *reflection attack*, E uses A to reveal the correct responds:

 $\begin{array}{l} A \rightarrow E: r_A \mbox{ (challenge)} \\ E \rightarrow A: r_A \mbox{ (the same challenge back)} \\ A \rightarrow E: E_K(r_A, r_{A'}) \mbox{ (response)} \\ E \rightarrow A: E_K(r_A, r_{A'}) \mbox{ (the same response back)} \\ A \rightarrow E: r_{A'} \mbox{ (second response)} \\ E \rightarrow A: r_{A'} \mbox{ (the same second response back)} \end{array}$

Remark: No user B is involved here, only the 'reflection' of A.

- c) Consider the following mutual authentication protocol:
 - 1. $A \rightarrow B : r_A$ (challenge)
 - 2. $B \rightarrow A : S_B(r_B, r_A, A)$ (response and 2nd challenge)
 - 3. $A \rightarrow B : r'_A, S_A(r'_A, r_B, B)$ (2nd response)

The *interleaving attack* uses the information of simultaneous sessions:

$$\begin{split} E &\to B : r_A \text{ (1st session 1.)} \\ B &\to E : r_B, S_B(r_B, r_A, A) \text{ (1st session 2.)} \\ E &\to A : r_A \text{ (2nd session 1.)} \\ A &\to E : r'_A, S_A(r'_A, r_B, B) \text{ (2nd session 2.)} \\ E &\to B : r'_A, S_A(r'_A, r_B, B) \text{ (1st session 3.)} \end{split}$$

Now E can impersonate as A to B. Remark: In this case the sessions of two protocols are interleaved (overlapped) like in a man-in-the-middle attack.