
Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 9
- Proposed Solution -

Friday, January 15, 2016

Solution of Problem 1

a) In order to break Lamport’s protocol we need to compute the (A, i + 1, wi+1) given
(A, i, wi) from the previous transmission i. Since the computation of A and i + 1 is
trivial, we only need to compute the following inverse hash function:

wi+1 = H t−i−1(w) = H−1(H t−i(w)) = H−1(wi).

If H is a secret one-way function, this step is clearly infeasible. However, even for a
public one-way function, this step is also infeasible, since the computing wi+1 and
H−1 is infeasible given H and w. Hence, using a secret function is not required.

b) Check if each of the four basic requirements on hash functions is necessary:

1. H is easy to compute:
Recall: Given m ∈M, H(m) is easy to compute.
This not required, but still a very useful property to provide an efficient protocol.

2. H is preimage resistant: (required X)
Recall: Given y ∈ Y, it is infeasible to find m such that H(m) = y.
Otherwise, wi = H(wi+1) could be broken, see a).

3. H is second preimage resistant: (required X)
Recall: Given m ∈M, it is infeasible to find m′ 6= m, such that H(m) = H(m′).
Otherwise, the attacker would be able to find a w′ such that H(w′) = H(wi+1).

4. H is collision-free:
Recall: It is infeasible to find m 6= m′ ∈M with H(m) = H(m′).
Although finding an arbitrary collision would indeed break the system, it will
affect a random chain of passwords in this scheme with negligible probability.

c) The discrete logarithm problem is hard to solve in Z∗p:
It is hard to determine x in ax ≡ y mod p for given values of the primitive element a
modulo p and y.
Lamport’s protocol in terms of the discrete logarithm problem is described by:

• Functions and Parameters:
Use the one-way hash-function H : {2, ..., p− 2} → Z∗p with w → aw mod p.



Choose a secret value w ∈ {2, ..., p− 2} and a primitive element a mod p.
Choose t, the maximal number of identifications.
Select the initial value w0 = H t(w).
• Protocol steps:

Compute next session key H t−i(w) = wi.
Session authentication A→ B : (A, i, wi).
B checks if i = iA and wi−1 ≡ awi mod p is true.
If correct, B accepts, sets iA ← iA + 1 and stores wi for the next sesssion.

d) Man-in-the-middle attack on Lamport’s protocol:
Let E intercept the current key wi from A. E uses it for authentication as A at B.
Furthermore, if E gains access to the initial value w and knows the current session
number i, the protocol is completely broken.

Solution of Problem 2

a) Claimant Alice (A) wants to prove her identity to verifier Bob (B). This identification
is done for a fixed password by comparing its hash value to a stored hash value. The
password is sent without protection: A

pwd→ B. B calculates h(pwd) and compares it
with the stored hash value, to verify the identity of A.

In a replay attack, eavesdropper Eve (E) intercepts the password and impersonates
A by reusing the password in a later session:

A
pwd→ B (plain password transmission)

A
pwd→ E (by intercepting/eavesdropping)

E
pwd→ B (impersonating A)

Improvement: Instead of revealing the password itself, a time stamp is encrypted
with a symmetric (secret) key. By comparing the time stamp with its internal clock,
B can verify that the claimant A knows the shared secret key. After authentication,
the response is expired and cannot be reused.
Authentication protocol:

B → A : tA (time stamp implicit in internal clock, no challenge necessary)
A→ B : EK(tA) (response)

Alternatively, the challenge can be made explicit, by taking a random value rB:

B → A : rB (explicit challenge)
A→ B : EK(rB) (response)

b) Consider the following authentication protocol:

A→ B : rA (A challenges B)



B → A : EK(rA, rB) (B responds to A and challenges A)
A→ B : rB (A responds to B)

In the reflection attack, E uses A to reveal the correct responds:

A→ E : rA (challenge)
E → A : rA (the same challenge back)
A→ E : EK(rA, rA′) (response)
E → A : EK(rA, rA′) (the same response back)
A→ E : rA′ (second response)
E → A : rA′ (the same second response back)

Remark: No user B is involved here, only the ’reflection’ of A.

c) Consider the following mutual authentication protocol:

1. A→ B : rA (challenge)
2. B → A : SB(rB, rA, A) (response and 2nd challenge)
3. A→ B : r′A, SA(r′A, rB, B) (2nd response)

The interleaving attack uses the information of simultaneous sessions:

E → B : rA (1st session 1.)
B → E : rB, SB(rB, rA, A) (1st session 2.)
E → A : rA (2nd session 1.)
A→ E : r′A, SA(r′A, rB, B) (2nd session 2.)
E → B : r′A, SA(r′A, rB, B) (1st session 3.)

Now E can impersonate as A to B. Remark: In this case the sessions of two protocols
are interleaved (overlapped) like in a man-in-the-middle attack.


