Solution of Problem 1

a) In order to break Lamport’s protocol we need to compute the \((A, i + 1, w_{i+1})\) given \((A, i, w_i)\) from the previous transmission \(i\). Since the computation of \(A\) and \(i + 1\) is trivial, we only need to compute the following inverse hash function:

\[
w_{i+1} = H^{t-i-1}(w) = H^{-1}(H^{t-i}(w)) = H^{-1}(w_i).
\]

If \(H\) is a secret one-way function, this step is clearly infeasible. However, even for a public one-way function, this step is also infeasible, since the computing \(w_{i+1}\) and \(H^{-1}\) is infeasible given \(H\) and \(w\). Hence, using a secret function is not required.

b) Check if each of the four basic requirements on hash functions is necessary:

1. \(H\) is easy to compute:
 - Recall: Given \(m \in M\), \(H(m)\) is easy to compute.
 - This not required, but still a very useful property to provide an efficient protocol.

2. \(H\) is preimage resistant: (required √)
 - Recall: Given \(y \in Y\), it is infeasible to find \(m\) such that \(H(m) = y\).
 - Otherwise, \(w_i = H(w_{i+1})\) could be broken, see a).

3. \(H\) is second preimage resistant: (required √)
 - Recall: Given \(m \in M\), it is infeasible to find \(m' \neq m\) such that \(H(m) = H(m')\).
 - Otherwise, the attacker would be able to find a \(w'\) such that \(H(w') = H(w_{i+1})\).

4. \(H\) is collision-free:
 - Recall: It is infeasible to find \(m \neq m' \in M\) with \(H(m) = H(m')\).
 - Although finding an arbitrary collision would indeed break the system, it will affect a random chain of passwords in this scheme with negligible probability.

c) The discrete logarithm problem is hard to solve in \(\mathbb{Z}_p^*\):

\[
\text{It is hard to determine } x \text{ in } a^x \equiv y \mod p \text{ for given values of the primitive element } a \text{ modulo } p \text{ and } y.
\]

Lamport’s protocol in terms of the discrete logarithm problem is described by:

- Functions and Parameters:
 - Use the one-way hash-function \(H : \{2, ..., p - 2\} \rightarrow \mathbb{Z}_p^*\) with \(w \rightarrow a^w \mod p\).
Choose a secret value $w \in \{2, \ldots, p-2\}$ and a primitive element $a \mod p$.
Choose t, the maximal number of identifications.
Select the initial value $w_0 = H^t(w)$.

- Protocol steps:
 Compute next session key $H^{t-i}(w) = w_i$.
 Session authentication $A \rightarrow B : (A, i, w_i)$.
 B checks if $i = i_A$ and $w_{i-1} \equiv a^{w_i} \mod p$ is true.
 If correct, B accepts, sets $i_A \leftarrow i_A + 1$ and stores w_i for the next session.

d) Man-in-the-middle attack on Lamport’s protocol:
Let E intercept the current key w_i from A. E uses it for authentication as A at B.
Furthermore, if E gains access to the initial value w and knows the current session number i, the protocol is completely broken.

Solution of Problem 2

a) Claimant Alice (A) wants to prove her identity to verifier Bob (B). This identification is done for a fixed password by comparing its hash value to a stored hash value. The password is sent without protection: $A \xrightarrow{pwd} B$. B calculates $h(pwd)$ and compares it with the stored hash value, to verify the identity of A.

In a **replay attack**, eavesdropper Eve (E) intercepts the password and impersonates A by reusing the password in a later session:

- $A \xrightarrow{pwd} B$ (plain password transmission)
- $A \xrightarrow{pwd} E$ (by intercepting/eavesdropping)
- $E \xrightarrow{pwd} B$ (impersonating A)

Improvement: Instead of revealing the password itself, a time stamp is encrypted with a symmetric (secret) key. By comparing the time stamp with its internal clock, B can verify that the claimant A knows the shared secret key. After authentication, the response is expired and cannot be reused.

Authentication protocol:

- $B \rightarrow A : t_A$ (time stamp implicit in internal clock, no challenge necessary)
- $A \rightarrow B : E_K(t_A)$ (response)

Alternatively, the challenge can be made explicit, by taking a random value r_B:

- $B \rightarrow A : r_B$ (explicit challenge)
- $A \rightarrow B : E_K(r_B)$ (response)

b) Consider the following authentication protocol:

- $A \rightarrow B : r_A$ (A challenges B)
\[B \to A : E_K(r_A, r_B)\] (B responds to A and challenges A)
\[A \to B : r_B\] (A responds to B)

In the *reflection attack*, E uses A to reveal the correct responses:

\[A \to E : r_A\] (challenge)
\[E \to A : r_A\] (the same challenge back)
\[A \to E : E_K(r_A, r_A')\] (response)
\[E \to A : E_K(r_A, r_A')\] (the same response back)
\[A \to E : r_A'\] (second response)
\[E \to A : r_A'\] (the same second response back)

Remark: No user B is involved here, only the ‘reflection’ of A.

c) Consider the following mutual authentication protocol:

1. \[A \to B : r_A\] (challenge)
2. \[B \to A : S_B(r_B, r_A, A)\] (response and 2nd challenge)
3. \[A \to B : r'_A, S_A(r'_A, r_B, B)\] (2nd response)

The *interleaving attack* uses the information of simultaneous sessions:

\[E \to B : r_A\] (1st session 1.)
\[B \to E : r_B, S_B(r_B, r_A, A)\] (1st session 2.)
\[E \to A : r_A\] (2nd session 1.)
\[A \to E : r'_A, S_A(r'_A, r_B, B)\] (2nd session 2.)
\[E \to B : r'_A, S_A(r'_A, r_B, B)\] (1st session 3.)

Now E can impersonate as A to B. Remark: In this case the sessions of two protocols are interleaved (overlapped) like in a man-in-the-middle attack.