Problem 1. (basic requirements for cryptographic hash functions) Using a block cipher $E_K(x)$ with block length k and key K, a hash function $h(m)$ is provided in the following way:

Append m with zero bits until it is a multiple of k, divide m into n blocks of k bits each.

$c \leftarrow E_{m_0}(m_0)$

for i in $1..(n-1)$ do

$d \leftarrow E_{m_i}(m_i)$

$c \leftarrow c \oplus d$

end for

$h(m) \leftarrow c$

a) Does this function fulfill the basic requirements for a cryptographic hash function?
b) Can these requirements be fulfilled by replacing the operation XOR (\oplus) by AND (\odot)?

Problem 2. (proof of Example 10.2) Complete the proof of Example 10.2 from the lecture notes. Show that from

$$k(x_1 - x'_1) \equiv x'_0 - x_0 \mod (p - 1)$$

the discrete logarithm $k = \log_a(b) \mod p$ can be efficiently computed.

Problem 3. (Collision in hash functions) Consider the following function:

$$h : \{0,1\}^* \rightarrow \{0,1\}^*, \; k \rightarrow \left(\left\lfloor \frac{10000(k_{10}(1 + \sqrt{5})/2 - \lfloor (k_{10}(1 + \sqrt{5})/2 \rfloor)}{2} \right\rfloor \right).$$

Here, $\lfloor x \rfloor$ is the floor function of x (round down to the next integer smaller than x). For computing $h(k)$, the bitstring k is identified with the positive integer it represents. The result is then converted to binary representation.

(example: $k = 10011$, $k_{10} = 19$, $h(k) = (7426)_2 = 1110100000010$)

a) Determine the maximal length of the output of h.
b) Give a collision for h.