

Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 12 Friday, February 5, 2016

Problem 1. (working with elliptic curves I) Consider the equation

$$Y^2 = X^3 + X + 1.$$

- a) Show that this equation describes an elliptic curve E over the field \mathbb{F}_7 .
- **b)** Determine all points in $E(\mathbb{F}_7)$ and compute the trace t of E.
- c) Show that $E(\mathbb{F}_7)$ is cyclic and give a generator.

Problem 2. (working with elliptic curves II) Consider the following function in the field \mathbb{F}_7

$$E_{a,b}: y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{F}_7$.

a) Determine the parameters a, b for which $P_1 = (1, 1)$ and $P_2 = (6, 2)$ are points on the curve. Do these parameters describe an elliptic curve in the field \mathbb{F}_7 ? Give a reason.

Consider the curve $E_{6,1}$ for the remainder of this exercise.

- b) Show that $E_{6,1}$ is an elliptic curve in the field \mathbb{F}_7 . Determine all points P and their inverses -P in the \mathbb{F}_7 -rational group.
- c) What are possible group orders for any group which is generated by an arbitrary point P of the curve?
- d) Show that Q = (1, 1) is a generator of $E_{6,1}(\mathbb{F}_7)$. You know that $4 \cdot (1, 1) = (3, 2)$.

Problem 3. (babystep-gaintstep-algorithm on elliptic curves)

- (a) Show that $E_{\alpha}: Y^2 = X^3 + \alpha X + 1$ is an elliptic curve over the finite field \mathbb{F}_{13} for $\alpha = 2$.
- (b) Compute the points iP for P = (0, 1) on E_2 with $i = 0, \ldots, 4$.
- (c) The group order of E_2 is $\#E_2(\mathbb{F}_q) = 8$. Show that P is a cyclic generator for E_2 .

Consider the following algorithm to compute the discrete logarithm on elliptic curves:

Algorithm 1 The Babystep-Giantstep-Algorithm on Elliptic Curves Input: An elliptic curve $E_{\alpha}(\mathbb{F}_q)$ and two points $P, Q \in E_{\alpha}(\mathbb{F}_q)$ Output: $a \in \mathbb{F}_q$, i.e., the discrete logarithm of Q = aP on E_{α} (1) Fix $m \leftarrow \lceil \sqrt{q} \rceil$. (2) Compute a table of *babysteps* $b_i = iP$ for indices $i \in \mathbb{Z}$ in $0 \le i < m$. (3) Compute a table of *giantsteps* $g_j = Q - j(mP)$ for all indices $j \in \mathbb{Z}$ in $0 \le j < m$ until you find a pair (i, j) such that $b_i = g_j$ holds. return $a = i + mj \mod q$.

- (d) Show that the given algorithm calculates the discrete logarithm on elliptic curves.
- (e) Compute the discrete logarithm of Q = aP with points P = (0, 1) and Q = (8, 3) on the elliptic curve E_2 using this algorithm.