c) Verification of step (i') of ElGamal signatures requires checking if \(1 \leq r' \leq p-1 \)

If this check is omitted, then Oscar can re-sign messages of his choice provided he has one valid signature and \(h(m)^{r'} \mod p-1 \) should exist.

Suppose \((r_1, s_1)\) is a signature for message \(m \).
O selects a message \(m' \) of his choice and computes

\[h(m') \] and \(u = h(m')(h(m)^{r'}) \mod p-1 \)

\[r' = u \mod p-1 \]

\(r' \) such that \(r' \equiv ru \mod (p-1) \) and \(r' \equiv r \mod p \)

Solve this by CRT, because \(p, p-1 \) are relatively prime.

The pair \((r'_1, s')\) is a signature for \(m' \) which would be accepted if \(1 \leq r' \leq p-1 \) is ignored.
11.2 The Digital Signature Algorithm (DSA)

- Proposed by the NIST in Aug 91
- Standardized as FIPS 186, renamed DSS (Digital Signature Standard)
- Developed by the NSA (not publicly)
- DSA is a variant of the ElGamal signature scheme
- Needs a hash function \(h: \{0,1\}^* \rightarrow \mathbb{Z}_q \) as a building block

The standard prescribes \(q = 160 \) bits

System parameters

Each user generates a public and private key as follows:

1. Choose a prime \(q \) with \(2^{159} < q < 2^{160} \) (160 bits)
2. Choose \(t, 0 \leq t \leq 8 \) further a prime \(p \) such that
 \[2^{512 + 64t} < p < 2^{512 + 64t} \quad \text{and} \quad q \mid p - 1 \]
 (Recommended by NIST from Oct 2001: \(t = 8 \), 1024 bits)
3. (i) Select \(g \in \mathbb{Z}_p^* \), compute \(\alpha = g \left(p - 1 \right) / q \) mod \(p \)
 (ii) If \(\alpha = 1 \), repeat step (i)
 (\(g \) is a generator of a cyclic subgroup of order \(q \) in \(\mathbb{Z}_p^* \))
4. Choose some random \(x \in \{1, \ldots, p - 2\} \) \(\text{mod} \ p \)
5. Compute \(\gamma = \alpha^x \) mod \(p \)
6. Public key: \((p, q, g, \gamma)\), private key \(x \)

Signing a message \(m \in \{0,1\}^* \)

1. Choose a random \(k \in \{1, \ldots, q - 1\} \)
2. \(r = (\alpha^k \text{ mod } p) \text{ mod } q \)
3. Compute \(k^{-1} \text{ mod } q \)
4. \(\tau = k^{-1} (h(m) + x \cdot r) \text{ mod } q \)
5. Signature \((r, \tau)\) \((320 \text{ bits in total}) \)
Verifikasi of signature \((\gamma, \zeta) \) on message \(m \):
1. Check if \(0 < \gamma < q \) and \(0 < \zeta < q \), otherwise decline
2. \(\omega = \gamma^{-1} \mod q \)
3. \(\mu_1 = (\omega h(m)) \mod q \), \(\mu_2 = (\gamma \cdot \zeta) \mod q \)
4. \(\nu = (\mu_1 \cdot \chi \cdot \mu_2 \mod p) \mod q \)
5. Accept the signature if \(\nu = \gamma \)

Proof that the verification is correct:
For a valid signature \((\gamma, \zeta) \) it holds that
\[
h(m) \equiv k \cdot \omega - \gamma \cdot \zeta \mod q
\]
Hence:
\[
a^{\mu_1} \cdot \gamma \cdot \mu_2 \equiv a^{\mu_1 + \mu_2} \mod p
\]
\[
\mu_1 + \mu_2 \equiv \omega h(m) + \gamma \cdot \zeta \equiv \omega \cdot k \cdot \omega - \gamma \cdot \zeta + \gamma \cdot \zeta \equiv k \mod q
\]
\[
\nu \equiv \left(a^{k \cdot \omega + k} \mod p \right) \mod q = \left(a^k \mod p \right) \mod q = \gamma
\]
\[
\text{as desired if } 1 \cdot a^q \equiv 1 \mod p
\]

Security

- Security relies on two DL problems:
 a) \(\mu \not\equiv 0 \mod p \)
 b) \(\mu < q \leq \frac{p}{2} \) (\(< q \) denotes the subgroup \(\gamma \cdot \omega \), \(\gamma \cdot \omega \))

- Security principles of the ElGamal scheme carry over:
 - always choose \(\alpha \) a new \(k \)
 - use of hash functions is mandatory
 - always verify 1. in the verification procedure. Otherwise
 signatures for arbitrary messages can be generated provided one valid
 signature is known.
Remarks:

a) Modular exponentiation is in the range of (160 bits) (rather than 1024 El Gamal)

b) k^{-1} may be generated, computed and shared in advance

c) Verification needs 2 instead of 3 modular exponentiation

d) Signature by DSA is about 320 bits, instead of 2048 bits for El Gamal.

e) In the verification step, also check, if $r \neq 0, 0 \neq 0$, otherwise the signature is rejected. But this happens with a very small probability.
12. Identification and Entity Authentication

This chapter considers techniques to allow the "verifier" to establish the identity of the "claimant," thereby preventing impersonation. Requirements on authentication protocols:

1. A is able to uniquely identify himself to B
2. B cannot reuse an identification exchange with A to impersonate A to a third party C. (non-reusability)
3. It is practically infeasible that a third party C can cause B to wrongly accept the identity of A. (impersonation)
4. Even if C observes the identification process between A and B very often he cannot impersonate A.

There are main categories of identification:

1. Something I know: password, PIN, private key
2. Something I possessed: key, magnetic-striped card, chipcard, PIN or password generator ...
3. Something I have: human physical characteristics, face recognition, biometric material pattern, hand-written signatures

12.1 Passwords

Fixed password schemes

Rather than storing a cleared user password pwd in a file, a hash value h(pwd) of each user password is stored. Verification is done by comparing the hash value of the entered password with the stored one for a given user.
Main attacks are:
- replay of fixed passwords
- exhaustive password search
- password-guessing and dictionary attacks

Defense strategies are:
- choose a random password or nearly random use of special characters (increase entropy)
- slowing down the password mapping
- salting passwords
 Extend the password by some random string, the salt, before hashing. Both the hashed password and the salt are stored as
 \[h(p\text{assword} \cdot salt) = salt \]

They does not complicate exhaustive search and simultaneous dictionary attacks against a large set of passwords

One-time passwords
- protects against eavesdropping and replay of passwords or "phishing"

TARPOT's protocol

Objective: A identifies himself to B
- use a one-way function \(H \)
- \(H_{k}(w) = \underbrace{H(H(\ldots H(H(w)))}}_{k\text{-times}} \)

Initial parameters: \(t \) : max number of identities, \(t = 100 \text{, } 000 \)
- A chooses an initial password \(w \)
- A transfers \(C_{0} = H^{t}(w) \) to B
- B initializes his counter for \(A \) to \(i_{A} = 1 \)

Protocol action for round \(i \):
- A computes \(C_{w} = H^{t-i}(w) \); transfers to B: \((A, i, C_{w}) \)
- B checks that \(i = i_{A} \) and \(C_{w} = H(w_{i}) \). If both checks succeed, B accepts and sets \(i_{A} = i_{A} + 1 \) and stores \(C_{w} \)
- \(- \)