12.2 Challenge-Response Identification (C-R-Ident.)

Basic ideas:
1. A (the claimant) proves her identity to B (the verifier) by demonstrating knowledge of a secret known only to her without revealing the secret.
2. The response is requested by a time-varying challenge.
3. The response from one execution does not provide information for a subsequent identification, as subsequent challenges will differ.

12.2.1 C-R-Ident. by symmetric key encryption

Techniques from ISO/IEC 9798-2 are described.

Notation:
- E_K: symmetric encryption alg. with key K
- t_A: time stamp generated by A
- r_A, r_B: random numbers by A, B
- $A \rightarrow B$: A transmits n.th. to B
- (\cdot): concatenation
- \ast: optional elements are/should be added to \cdot

- Unilateral authentication, time-stamp-based

 $A \rightarrow B : E_K (t_A, B^\ast)$

 Including the identifier B means prevents an adversary from re-using the message immediately on A.

- Unilateral authentication, random numbers

 $A \leftarrow B : r_B \quad (1)$

 $A \rightarrow B : E_K (r_B, B^\ast) \quad (2)$

 B decrypts (2), verifies from (1). Inclusion of B avoids a reflection attack.
0 \rightarrow B : r_B \quad \text{(kid protocol)}
0 \rightarrow B : r_B \quad \text{(opening a 2nd protocol)}
0 \leftarrow B : E_k(r_B, A^*) \quad \text{(in the 2nd protocol)}
0 \rightarrow B : E_k(r_B, B^*) \quad \text{(in the 1st protocol)}

Avoided by including \(A^* \) or \(B^* \)
the \(K_1, K_2 \) or (as in the protocol) include names \((A^* \) and \(B^* \))
and don't use same names.
\(A \) is not involved at all.

Mutual authentication, random number:

\[A \leftarrow B : r_B \quad (1) \]
\[A \rightarrow B : E_k(r_A, r_B, B^*) \quad (2) \]
\[A \leftarrow B : E_k(r_B, r_A) \quad (3) \]

\(B \) decrypts \((2) \) (verifies \(r_B \) from \((1) \), obtains \(r_A \), encrypts \(B^* \))
\(A \) decrypts \((3) \) (verifies \(r_B \) and \(r_A \)).
\(r_A \) might be used as shared secret key.

12.2.2 C-R - Identity by public-key techniques

Principle: The claimant decrypts a challenge encrypted by his public key.

Notation:
\(h \): Hash fun, \(E_A \) encryption under \(A \)'s public key

\[A \leftarrow B : h(r_B), B, E_A(r_B, B) \quad (1) \]
\[A \rightarrow B : r_B \]

\(B \) chooses a random \(r_B \), computes the within \(h(r_B) \) without revealing \(r_B \), computes the challenge \(E_A(r_B, B) \).
\(A \) decrypts \(E_A(r_B, B) \) to recover \(r' \), \(B' \), compute \(h(r') \).
If \(h(r') = h(r_B) \) and \(B' = B \) then \(A \) sends \(r' = r_B \) to \(B \).
12.2.3 C-R - Isolated based on digital signatures

Principle: The claimant signs a challenge digitally.

Notation:
- \(S_A \): signature by \(A \)
- \(\text{cert}_A \): certificate which contains the authentic public signature key.

Protocols are from ISO/IEC 9798-3

6. Unilateral with timestamps

\[A \rightarrow B : \text{cert}_A, t_A, B, S_A(t_A, B) \]
- B verifies that the timestamp is acceptable, the correct identifier B checks that the signature over \((t_A, B)\) is correct.

7. Unilateral with random number

\[A \rightarrow B : \; N_B \]
\[A \rightarrow B : \text{cert}_A, N_A, B, S_A(N_A, N_B, B) \]
- B verifies its own identifier, checks validity of A's signature over \((N_A, N_B, B)\).

8. Mutual authentication with random number

\[A \rightarrow B : \; N_B \]
\[A \rightarrow B : \text{cert}_A, N_A, B, S_A(N_A, N_B, B) \]
\[A \rightarrow B : \text{cert}_B, A, S_B(N_B, N_A, A) \]
- B verifies as above. A knows \(N_A, N_B \) verifies the validity of B's signature over \((N_B, N_A, A)\).
Kerberos: three headed dog guarding the entrance to the underworld in Greek mythology.

Created out of a larger "Athena" at MIT.

Purpose: to provide strong levels of authentication and security in key exchange between servers and clients in a network

The symmetric encryption and relies on a trusted authority (TA).

TA: central server as trusted authority, Kerberos authentication

Notation:

- k: encryption with key k
- R_A: random number by A
- T_A: timestamp by A

Client A requests access to a server B. Basic action:

- $A \rightarrow TA$: request for a ticket
- $TA \rightarrow A$: ticket and ciphertext C with k_{TA}
- $A \rightarrow B$: ciphertext C and ticket
- $B \rightarrow A$: successful authentication with ticket and C
Protocol: Kerberos

1. $A \rightarrow TA: (A, B, r_A)$
2. TA generates session key k_S, validity period l, ticket $t = (A, k_S, l)$
 $TA \rightarrow A: E_k_S (k_S r_A, l, B), E_k_B (t)$
3. A recovers k_S, r_A, l, B, verifies r_A, B, with t_A to cancel this
 $A \rightarrow B: E_k_B (t), E_k_S (A, t_A)$
4. B recovers $t = (A, k_S, l)$ A, t_A and checks
 a) A from t matches A
 b) t_A is fresh
 c) t is in the validity period l
 If all checks pass, A's authentication is accepted.
 Additionally, to authenticate B to A
5. $B \rightarrow A: E_k (t_A)$
6. A recovers t_A, checks if t_A is correct. If yes, B is authenticated
 Session key k_S is used for encrypted comm. between A and B

Remarks:
- r_A in t allows authentication of TA to A. Is TA address available?
- t_A in t prevents replay attacks of $E_k (A), E_k_B (t)$
- Secure and synchronized clocks are needed.
- The full k version of Kerberos includes another server, the ticket granting server.
Disadvantage of:

- Fixed passwords: upon intercepting the password, the owner can be impersonated.

Ex.: Faked ATM (automatic teller machine). Bank card inserted, PIN typed in, ATM answers "card not accepted." But: counterfeit bank card was made, PIN was intercepted; money was withdrawn from a legitimate ATM.

- C-R protocols: true variant identification. Partial information shall be revealed.

Zero-knowledge protocols:

Prover A demonstrates knowledge of a secret to verifier B while revealing no information whatsoever.