Solution of Problem 1

Recall for a), b) and c) that we have: \(r = a^k \mod p \) and \(y = a^x \mod p \) from the ElGamal signature scheme.

a) This is easily solved by substituting \(s = x^{-1}(h(m) - kr) \), \(r \) and \(y \):

\[
v_1 \equiv y^s r^r \equiv y^{x^{-1}(h(m) - kr)} a^{kr} \\
\equiv a^{xx^{-1}(h(m) - kr)} a^{kr} \\
\equiv a^{h(m) - kr + kr} \\
\equiv a^{h(m)} \equiv v_2 \mod p.
\]

If the given signature is properly checked, \(v_1 = y^s r^r = a^{h(m)} = v_2 \mod p \) is true.

b) In this case it is useful to proceed stepwise. We begin with computing:

\[
a^s \equiv a^{xh(m) + kr} \equiv a^{h(m)} a^{kr} \mod p.
\]

Next, we substitute \(y \) and \(r \), correspondingly, and we rearrange the congruence:

\[
a^s \equiv y^{h(m) r^r} \mod p \\
\iff a^s r^{-r} \equiv y^{h(m)} \mod p.
\]

In the last step, we fix the parameters for verification by:

\[
v_1 \equiv a^s r^{-r} \mod p, \\
v_2 \equiv y^{h(m)} \mod p,
\]

so that \(v_1 = v_2 \) must be checked by the proposed scheme.

c) In analogy to b), we compute:

\[
a^s \equiv a^{xr + kh(m)} \\
\equiv a^{xr} a^{kh(m)} \\
\equiv y^r r^{h(m)} \mod p \\
\iff v_1 = a^s y^{-r} \equiv r^{h(m)} = v_2 \mod p.
\]
Solution of Problem 2

We have a generator \(a \equiv g^{p-1}/q \mod p \), with \(g \in \mathbb{Z}_p^* \), \(q \mid p-1 \), \(p, q \) prime and \(a \neq 1 \). By definition of the order of a group, we know that:

\[
a^{\text{ord}_p(a)} \equiv 1 \mod p.
\]

Recall: \(\text{ord}_p(a) = \min\{k \in \{1, \ldots, \varphi(p)\} \mid a^k \equiv 1 \mod p\} \). With \(a \neq 1 \to \text{ord}_p(a) > 1 \). Next, we compute \(a^q \) and substitute \(g^{p-1}/q \):

\[
a^q \equiv \left(\frac{g^{p-1}}{q} \right)^q \equiv g^{p-1} \text{Fermat} \equiv 1 \mod p.
\]

From this we obtain \(1 < \text{ord}_p(a) \leq q \).

Yet to show: Does a \(k \in \mathbb{Z} \) with \(k < q \) exist so that \(k \) is the order of the group?

This is a proof by contradiction.

Assume the subgroup has indeed \(k = \text{ord}_p(a) < q \), i.e., \(\exists k < q : k = \text{ord}_p(a) \). Then:

\[
a^q \equiv a^{lk+r}, \ l \in \mathbb{Z}, r < k,
\]

\[
\equiv a^r
\]

\[
\equiv 1 \mod p.
\]

We distinguish two possible cases:

- \(\text{ord}_p(a) \nmid q \Rightarrow a^r \equiv 1 \mod p \), with \(1 < r < \text{ord}_p(a) \) (Def. of \(\text{ord}_p(a) \))
- \(\text{ord}_p(a) \mid q \Rightarrow a^0 \equiv 1 \mod p \) ✓

Since \(q \) is prime \(\Rightarrow \text{ord}_p(a) \mid q \) there are only two divisors of \(q \), namely 1 and \(q \):

- \(\text{ord}_p(a) = 1 \) ✓ (since \(a \neq 1 \) is assumed)
- or \(\text{ord}_p(a) = q \) ✓ (We obtain \(k = q \) and not the demanded \(k < q \))

The cyclic subgroup has order \(q \) in \(\mathbb{Z}_p^* \), if a is chosen according to the algorithm.
Solution of Problem 3

Choose a pair \((\tilde{u}, \tilde{v}) \in \mathbb{Z} \times \mathbb{Z}\) such that \(\gcd(\tilde{v}, q) = 1\), so that \(\tilde{v}\) is invertible modulo \(q\).

The forged signature is constructed by:

\[
\begin{align*}
 r &\equiv (a^{\tilde{u}} y^{\tilde{v}} \mod p) \mod q, \\
 s &\equiv r \tilde{v}^{-1} \mod q,
\end{align*}
\]

Then \((r, s)\) is a valid signature for the message \(m = s \tilde{u} \mod q\).

Check verification procedure of the DSA:

1. Check \(0 < r < q, 0 < s < q\). ✓ (due to modulo \(q\))

2. Compute \(w \equiv s^{-1} \mod q\).

3. In this step, no hash-function is used by the given assumption, i.e., \(h(m) = m\):

\[
\begin{align*}
 u_1 &\equiv wm \equiv s^{-1}s \tilde{u} \equiv \tilde{u} \mod q, \\
 u_2 &\equiv rw \equiv rs^{-1} \mod q.
\end{align*}
\]

4. \(v = a^{u_1} y^{u_2} \equiv a^{u_1 + u_2 s^{-1}} \equiv a^{\tilde{u} + \tilde{x}} \equiv a^{\tilde{u}} (a^{\tilde{x}})^{-1} \equiv (a^{\tilde{u}} y^{\tilde{v}} \mod p) \mod q\).

5. The forged DSA signature is valid, since \(v = r\) holds. ✓

Solution of Problem 4

a) We demand the following conditions on the two prime parameters \(p\) and \(q\):

i) \(2^{159} < q < 2^{160}\),

ii) \(2^{1023} < p < 2^{1024}\),

iii) \(q \mid p - 1\).

We use a stepwise approach going through i), ii), and iii).

Our suggested algorithm to find a pair of primes \(p, q\) is:

1) Get a random odd number \(q\) with \(2^{159} < q < 2^{160}\).
2) Repeat step 1) if \(q\) is not prime. (e.g., use the Miller-Rabin Primality Test)
3) Get a random even number \(k\) with \(\left\lfloor \frac{2^{1023} - 1}{q} \right\rfloor < k < \left\lfloor \frac{2^{1024} - 1}{q} \right\rfloor\) and set \(p = kq + 1\).
4) If \(p\) is not prime, repeat step 3).

Check if the algorithm finds a correct pair of primes \(p, q\) according to i), ii), and iii):

- With step 1), \(2^{159} < q < 2^{160}\) holds, as demanded in i). ✓
- Due to step 2), \(q\) is prime. ✓
- Due to step 3), it holds:

\[
\begin{align*}
 p &= kq + 1 \geq \left\lceil \frac{2^{1023} - 1}{q} \right\rceil q + 1 \geq 2^{1023}, \\
 p &= kq + 1 \leq \left\lfloor \frac{2^{1024} - 1}{q} \right\rfloor q + 1 \leq 2^{1024},
\end{align*}
\]

and therefore \(2^{1023} < p < 2^{1024}\) holds, as demanded in ii). ✓
• Step 3) also provides \(p = kq + 1 \Leftrightarrow q \mid p - 1 \), as demanded in iii).

 An even \(k \) ensures that \(p \) is an odd number.

• Step 4) provides that \(p \) is also prime.

Altogether, the proposed algorithm works.

b) In steps 2) and 4), a primality test is chosen (here: Miller-Rabin Primality Test), such that the error probability for a composite \(q \) is negligible.

The success probability of finding a prime of size \(x \) is about \(\frac{1}{\ln(x)} \). (cf. hint)

If even numbers (these are obviously not prime) are skipped, the success probability doubles. The success probability of finding a single prime is estimated by:

\[
p_{succ,p} \approx 2 \cdot \frac{|\{p \in \mathbb{Z} | p \leq n, p \text{ prime}\}|}{n}.
\]

The combined probability of success for a pair of primes \(p \) and \(q \) is approximately:

\[
= \frac{2}{\ln(2^{100})} \cdot \frac{2}{\ln(2^{1024})} = \frac{1}{80.512 \ln(2)^2} \approx 5.08 \cdot 10^{-5}.
\]