Solution of Problem 1

Parameters: \(n = pq \) with \(p, q \equiv 3 \mod 4 \), and \(p, q \) secret primes.

Each user chooses an arbitrary sequence of seeds \(s_1, ..., s_K \in \{1, ..., n - 1\} \), with \(\gcd(s_i, n) = 1 \) and publishes: \(v_i = (s_i^2)^{-1} \mod n \).

A public hash function is applied:
\[
H : \{0, 1\}^* \to \{(b_1, ..., b_K) \mid b_i \in \{0, 1\}\}
\]

Signature generation:

(i) A chooses an arbitrary value \(r \in \{1, ..., n - 1\} \) and calculates \(x \equiv r^2 \mod n \). (witness)

(ii) A calculates:
\[
h(m, x) = (b_1, ..., b_K) \quad \text{(challenge)}
\]
and afterwards \(y \equiv r \prod_{j=1}^{K} s_{b_j}^j \mod n \) (response)

(iii) The signature of \(m \) is \((x, y) \):
\[
A \to B : m, x, y
\]

Verification:

(i) B calculates \(h(m, x) = (b_1, ..., b_K) \). (challenge)

(ii) B calculates \(z \equiv y^2 \prod_{j=1}^{K} v_{b_j}^j \mod n \). (response)

(iii) B accepts the signature if \(z = x \) holds.

Proof that this signature and verification scheme is correct:
\[
z = y^2 \prod_{j=1}^{K} v_{b_j}^j \equiv y^2 \prod_{j=1}^{K} s_{b_j}^{2b_j} \prod_{j=1}^{K} v_{b_j}^j \equiv x \mod n. \quad \blacksquare
\]
Solution of Problem 2

a) The secret service (MI5) chooses an arbitrary seed \(s \in \mathbb{Z}_n \) per iteration.

The MI5 calculates the quadratic residue \(y \equiv s^2 \mod n \):

\[
\text{MI5} \rightarrow \text{JB}: y
\]

JB calculates the four square roots of \(y \) modulo \(n \) using the factors \(p, q \) of \(n \).

JB chooses a square root \(x \):

\[
\text{JB} \rightarrow \text{MI5}: x
\]

The MI5 verifies that \(x^2 \equiv y \mod n \).

Since JB has no information about \(s \), he chooses the \(x \) with probability \(\frac{1}{2} \), such that \(x \neq \pm s \mod n \).

If the MI5 receives such an \(x \), \(n \) can be factorized:

\[
y \equiv s^2 \equiv x^2 \mod n
\]

\[
\Rightarrow s^2 - x^2 \equiv 0 \mod n
\]

\[
\Rightarrow (s - x)(s + x) \equiv 0 \mod n.
\]

The probability that JB always fails by sending \(x \equiv \pm s \mod n \) in all 20 submissions is:

\[
\frac{1}{2^{20}} = \frac{1}{1048576} \approx 10^{-6}.
\]

b) Zero-knowledge property: No information about the secret may be revealed during the response.

However, in this protocol it is even possible, that the full secret \(s \) is revealed. Hence, this is not secure a zero-knowledge protocol!

c) A passive eavesdropper \(E \) can only obtain the values \(x \) and \(y \). \(E \) only knows the square roots \(\pm x \) of \(y \) modulo \(n \), which is useless in the next iteration. This knowledge is not sufficient to factorize \(n \).

Solution of Problem 3

By definition: \(E : Y^2 = X^3 + aX + b \) with \(a, b \in K \) and \(\Delta = -16(4a^3 + 27b^2) \neq 0 \) describes an elliptic curve.

a) Here: \(E : Y^2 = X^3 + X + 1 \), i.e., \(a = b = 1 \), \(K = \mathbb{F}_7 \). Then,

\[
\Delta = -16(4a^3 + 27b^2) = -16(4 + 27) \equiv 5 \cdot 3 \equiv 1 \neq 0 \mod 7.
\]

It follows that \(E \) is an elliptic curve in \(\mathbb{F}_7 \).

b) We use the following table to determine the points.

It follows from the third column that,

\[
Y^2 \in \{0, 1, 2, 4\} = A.
\]
and from the last column that
\[1 + X + X^3 \in \{1, 3, 4, 5, 6\} = B . \]

Furthermore,
\[C = A \cap B = \{1, 4\} . \]

With \(Y^2 = 1 \Leftrightarrow Y \in \{1, 6\} \) and \(1 + X + X^3 = 1 \Leftrightarrow X = 0 \)
\[\Rightarrow (0, 1), (0, 6) \in E(\mathbb{F}_7) . \]

With \(Y^2 = 4 \Leftrightarrow Y \in \{2, 5\} \) and \(1 + X + X^3 = 4 \Leftrightarrow X = 2 \)
\[\Rightarrow (2, 2), (2, 5) \in E(\mathbb{F}_7) . \]

We can determine the set of all points on \(E , \)
\[E(\mathbb{F}_7) = \{O, (0,1), (0,6), (2,2), (2,5)\} . \]

For the trace \(t \) it holds
\[\#E(\mathbb{F}_q) = q + 1 - t . \]

Here, \(q = 7 \), and \(\#E(\mathbb{F}_7) = 5 \), so
\[5 = 7 + 1 - t \Leftrightarrow t = 3 . \]

\textit{Note (Hasse):} \(t < 2\sqrt{q} = 2\sqrt{7} \approx 5.3 \)

\textbf{c) With the group law addition,} \(E(\mathbb{F}_7) \) \textit{is a finite abelian group. It holds ord}(P) | \#E(\mathbb{F}_7) \)
(Lagrange’s theorem). It follows for \(P \neq O : 1 < \text{ord}(P) = 5 \), i.e., every \(P \neq O \) is a generator. The addition for \(P = (x, y) , P_1 = (x_1, y_1) , P_2 = (x_2, y_2) \) is defined by

(i) \(P + O = P \)
(ii) \(P + (x, -y) = O \Rightarrow -P = (x, -y) \)
(iii) If \(P_1 \neq \pm P_2 \Rightarrow P_3 = (x_3, y_3) = P_1 + P_2 \) with \(z = \frac{y_2 - y_1}{x_2 - x_1} , x_3 = z^2 - x_1 - x_2 , y_3 = z(x_1 - x_3) - y_1 . \)
(iv) If \(P_1 \neq -P_1 \Rightarrow 2P_1 = P_1 + P_1 = (x_3, y_3) \) with \(c = \frac{3x_1^2 + a}{2y_1} , x_3 = c^2 - 2x_1 , y_3 = c(x_1 - x_3) - y_1 . \)
Start with $P = (0, 1)$.

$2P = 2 \cdot (0, 1) \overset{(iv)}{=} (2, 5)$

using $c = \frac{1}{2} = 2^{-1}$ Table 4 $\Rightarrow x_3 = 4^2 \equiv 2 \Rightarrow y_3 = 4(-2) - 1 \equiv 5 \mod 7$

$3P = (2, 5) + (0, 1) \overset{(iii)}{=} (2, 2)$

using $z = \frac{-4}{-2} = 4 \cdot 2^{-1} = 2 \Rightarrow x_3 = 4 - 0 - 2 = 2$

$\Rightarrow y_3 = 2(2 - 2) - 5 \equiv 2 \mod 7$

$4P = (2, 2) + (0, 1) = (0, 6)$

$5P = (0, 6) + (0, 1) \overset{(ii)}{=} O$

$6P = O + (0, 1) \overset{(i)}{=} (0, 1)$