Exercise 7
Friday, December 15, 2017

Problem 1. *(Lamport's protocol)* Discuss the following properties of Lamport’s protocol:

a) Show that the one-way function is not required to be secret.

b) Which properties must a hash function fulfill to be usable as a one-way function in the protocol?

c) Propose a function that could be used as the one-way function, assuming that the discrete logarithm is hard to solve in \mathbb{Z}_p^* for a usable p. Describe Lamport’s protocol for this special case.

d) How can an attacker get access to a one-time password using an active attack?

Problem 2. *(attacks on identification schemes)*

a) Describe a replay attack for a fixed password identification. Propose a simple identification scheme to prevent this attack.

b) The following challenge-response mutual authentication protocol is given

1) $A \rightarrow B : r_A$
2) $A \leftarrow B : E_K(r_A, r_B)$
3) $A \rightarrow B : r_B$

Explain how an eavesdropper E can authenticate to A without knowing the symmetric key K. This is a reflection attack. Propose an improved protocol.

c) The following challenge-response protocol based on digital signatures is given

1) $A \rightarrow B : r_A$
2) $A \leftarrow B : r_B, S_B(r_B, r_A, A)$
3) $A \rightarrow B : r'_A, S_A(r'_A, r_B, B)$

Explain how an eavesdropper E can authenticate to B without signing any message with his own identity. This is an interleaving attack.

Problem 4. *(Kerberos with ticket granting server)* We introduce a ticket granting server for the simplified Kerberos protocol.

To establish secure *unilateral* authentication from *A* (Alice) to *B* (Bob) with a trusted authority server *T* (Trent) and a ticket granting server *G* (Grant), we use the following parameters:

- k_{AT} is a shared key between *A* and *T*
- k_{AG} is a session key for secure communication between *A* and *G*
- TGT is a ticket granting ticket to authenticate *A* to *G*
- k_{TG} is a shared key between *T* and *G*
- a_{AG} is an authenticator between *A* and *G*
- k_{AB} is a session key for secure communication between *A* and *B*
- k_{BG} is a shared key between *G* and *B*
- ST is a service ticket to authenticate *A* to *B*
- a_{AB} is an authenticator between *A* and *B*
- Time stamps t_i and validity periods l_i, for $i = 1, 2, ...$

The sequence of messages to be exchanged by the protocol is provided in the figure below.

![Diagram showing the sequence of messages](image)

Formulate\(^1\) the corresponding protocol and describe it with the parameters as given above.

\(^1\)Feel free to use textbooks, www, etc.