Problem 1. (working with elliptic curves II) Consider the following function in the field \mathbb{F}_7

$$E_{a,b} : y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{F}_7$.

a) Determine the parameters a, b for which $P_1 = (1, 1)$ and $P_2 = (6, 2)$ are points on the curve. Do these parameters describe an elliptic curve in the field \mathbb{F}_7? Give a reason.

Consider the curve $E_{6,1}$ for the remainder of this exercise.

b) Show that $E_{6,1}$ is an elliptic curve in the field \mathbb{F}_7. Determine all points P and their inverses $-P$ in the \mathbb{F}_7-rational group.

c) What are possible group orders for any group which is generated by an arbitrary point P of the curve?

d) Show that $Q = (1, 1)$ is a generator of $E_{6,1}(\mathbb{F}_7)$. You know that $4 \cdot (1, 1) = (3, 2)$.

Problem 2. (elliptic curve double-and-add) Consider the cubic equation $E : y^2 = x^3 + 4x + 1$.

a) Is E an elliptic curve over \mathbb{F}_5? Substantiate your answer.

b) Determine all points on the elliptic curve E and the order of the corresponding group.

c) Is point $Q = (1, 1)$ a generator of the group? Substantiate your answer.

In analogy to the Square-and-Multiply algorithm in a ring \mathbb{Z}_n, the k-th multiple of P can be algorithmically computed based on doubling and addition on an elliptic curve over a field \mathbb{F}_q. You may use the binary representation of factor $k = (k_m, \ldots, k_0)_2 = \sum_{i=0}^{m} k_i 2^i$.

d) Describe $45P$ in terms of doubling and addition of P only.

e) Formulate an iterative Double-and-Add algorithm $f_k(P, k)$ to calculate kP.

f) Give a recursive version $f_{rec}(P, k)$ of the above Double-and-Add algorithm.