

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 11 Friday, January 26, 2018

Problem 1. (babystep-gaintstep-algorithm on elliptic curves)

- (a) Show that $E_{\alpha}: Y^2 = X^3 + \alpha X + 1$ is an elliptic curve over the finite field \mathbb{F}_{13} for $\alpha = 2$.
- (b) Compute the points iP for P = (0, 1) on E_2 with $i = 0, \ldots, 4$.
- (c) The group order of E_2 is $\#E_2(\mathbb{F}_q) = 8$. Show that P is a cyclic generator for E_2 .

Consider the following algorithm to compute the discrete logarithm on elliptic curves:

Algorithm 1	The	Babyst	ep-Giantste	ep-Algorithm	on	Elliptic	Curves
-------------	-----	--------	-------------	--------------	----	----------	--------

Require: An elliptic curve $E_{\alpha}(\mathbb{F}_q)$ and two points $P, Q \in E_{\alpha}(\mathbb{F}_q)$ **Ensure:** $a \in \mathbb{F}_q$, i.e., the discrete logarithm of Q = aP on E_{α} (1) Fix $m \leftarrow \lceil \sqrt{q} \rceil$. (2) Compute a table of *babysteps* $b_i = iP$ for indices $i \in \mathbb{Z}$ in $0 \le i < m$. (3) Compute a table of *giantsteps* $g_j = Q - j(mP)$ for all indices $j \in \mathbb{Z}$ in $0 \le j < m$ until you find a pair (i, j) such that $b_i = g_j$ holds. **return** $a = i + mj \mod q$.

- (d) Show that the given algorithm calculates the discrete logarithm on elliptic curves.
- (e) Compute the discrete logarithm of Q = aP with points P = (0, 1) and Q = (8, 3) on the elliptic curve E_2 using this algorithm.

Problem 2. Consider a trusted authority which chooses the following system parameters.

- (i) p is a large prime number.
- (ii) q is a large prime number dividing p-1.
- (iii) $\beta \in \mathbb{Z}_p^*$ has order q.
- (iv) $t \in \mathbb{N}$ is a security parameter such that $q > 2^t$.

Every user in the network chooses its own private key a, with $0 \le a \le q-1$, and constructs a corresponding public key $v = \beta^{-a} \mod p$. The Schnorr Identification Scheme is defined as:

1) Alice chooses a random number k, with $0 \le k \le q-1$, and she computes $\gamma = \beta^k \mod p$. She sends her certificate and γ to Bob.

- 2) Bob verifies Alice's public key v on the certificate. Bob chooses a random challenge r, with $1 \le r \le 2^t$, and sends it to Alice.
- 3) Alice computes $y = k + ar \mod q$ and sends the response y to Bob.
- 4) Bob verifies that $\gamma \equiv \beta^y v^r \mod p$. If true, then Bob accepts the identification; otherwise, Bob rejects the identification.

Answer the following questions:

- (a) On the hardness of which mathematical problem does the Schnorr Identification Scheme rely?
- (b) Show that Alice is able to prove her identify to Bob, assuming that both parties are honest and perform correct computations, i.e., the verification in step 4 is correct.
- (c) Which operations are computationally hardest in this protocol? Which operations can be done prior to the direct identification process?
- (d) Now, the public parameters are p = 71, q = 7, $\beta = 20$, t = 2. Suppose Alice chooses a = 5, k = 10, and Bob issues the challenge r = 4. Compute all steps in the protocol, assuming that Alice's certificate is valid.

Problem 3.

- a) Show that $\alpha = 5n + 7$ and $\beta = 3n + 4$ are relatively prime for any integer *n*. *Hint*: If $\alpha \cdot x + \beta \cdot y = 1$ for some integers *x* and *y* then α and β are relatively prime.
- b) Alice and Bob use the RSA cryptosystem and hence need to choose two prime numbers p and q. Using the Miller-Rabin Primality Test, describe a method to generate the prime numbers p and q, such that n = pq has exactly K bits and p and q have K/2 bits, provided K is even.
- c) Alice and Bob choose prime numbers p = 11 and q = 13. Moreover, Alice chooses her private key as e = 7. Bob receives a ciphertext c = 31. What is the message m sent by Alice?.
- d) Suppose Alice and Bob use the RSA system with the same modulo n and their public keys e_A and e_B are relatively prime. A new user Claire wants to send a message to both Alice and Bob, so Claire encrypts the message using $c_A = m^{e_A} \mod n$ and $c_B = m^{e_B} \mod n$. Show how an eavesdropper can decipher the message m by intercepting both c_A and c_B .

Consider the RSA signature scheme.

- e) Describe the requirements of a *digital signature*.
- f) Suppose that Oscar is interested in knowing Alice's signature s for the message m. Oscar knows Alice's signatures for the messages m_1 and $m_2 = (m \cdot m_1^{-1}) \mod n$, where m_1^{-1} is the inverse of m_1 modulo n. Show that Oscar can generate a valid signature s on m, using the signatures of m_1 and m_2 .