The lecture and exercise on AMC on 14th of December is cancelled.

9.4 Probabilistic Public Key Encryption

Prop 9.7 Let \(n = p \cdot q \), \(p \neq q \) prime. Then

\[a \equiv a \mod m \Rightarrow a \equiv a \mod p \text{ and } a \equiv a \mod q. \]

Proof

\[a \equiv a \mod m \Rightarrow x^2 \equiv a \mod m \Rightarrow x^2 \equiv a \mod p \text{ and } x^2 \equiv a \mod q. \]

\[x^2 \equiv a \mod p \Rightarrow x \equiv \pm \sqrt{a} \mod p \]

\[x^2 \equiv a \mod q \Rightarrow x \equiv \pm \sqrt{a} \mod q. \]

\[x \equiv \pm \sqrt{a} \mod m \Rightarrow \sqrt{a} \mod m \]

\[\sqrt{a} = \sqrt{a} \mod m \]

Prop 9.8 Let \(p > 2 \) be prime, \(a \in \mathbb{N} \). The Legendre symbol is defined as

\[\left(\frac{a}{p} \right) = \begin{cases}
0 & \text{if } a \equiv 0 \mod p \\
1 & \text{if } a \equiv a \mod p \\
-1 & \text{otherwise}
\end{cases} \]

Let \(n = \prod_i p_i^{k_i} \), the prime factorization of an odd \(n \in \mathbb{N} \), then the Jacobi symbol is defined as

\[\left(\frac{a}{m} \right) = \prod_i \left(\frac{a}{p_i} \right)^{k_i}. \]

Remark 9.9

a) For any odd \(n \in \mathbb{N} \):

\[\left(\frac{ab}{m} \right) = \left(\frac{a}{m} \right) \left(\frac{b}{m} \right). \]

b) There is an efficient alg. for computing \(\left(\frac{a}{m} \right) \) with run time \(O (\ln n)^2 \) (see MOV p. 73) without factoring !

Unlike the Legendre symbol, the Jacobi symbol does not reveal whether \(a \equiv a \mod m \). It holds that

\[a \equiv a \mod m \Rightarrow \left(\frac{a}{m} \right) = 1, \]

however, the reverse is not true in general.
Prop 9.10: Let \(n = p \cdot q \) and \(p \neq q \) prime, \(a \in \mathbb{Z}_n \) with \((a/n) = 1 \).

Then, \(a \) is a QR mod \(n \) if and only if \((a/p) = 1 \) and \((a/q) = 1 \).

Proof:
\[
\left(\frac{a}{p}\right) = 1 \iff \text{a is a QR mod } p.
\]
Suppose \(a \) is not a QR mod \(q \).

Then, \((a/m) = (a/p)(a/q) \neq 1 \)

\(\Rightarrow \left(\frac{a}{m}\right) \neq 1 \)

Hence, \(a \) is not a QR mod \(m \).

The subsequent probabilistic PK systems (Goldwasser-Micali and Blum-Goldwasser) rely on the intractability of the so-called quadratic residuosity problem (QRP).

QRP \((a,m)\): Decide whether or not \(a \) is a QR mod \(m \).

PRSP \((a,m)\): Decide if \(a \) is a QR mod \(m \) and compute the square roots \(x \), i.e., \(x \) with \(x^2 \equiv a \pmod{m} \).

FAC \((n)\): Factoring \(n \).

\([P1] \longrightarrow [P2]\) means: If there exists an efficient alg. to solve \(P1 \) then there is an efficient alg. to solve \(P2 \).

\(P2 \) may be reduced to \(P1 \).
\[\text{QRSP}(a, \alpha, n) \iff \text{FAC}(n)\]

\[\text{QRSP}(a, \alpha, n) \quad \text{obvious}\]

\[\text{QRSP}(a, \alpha, n) \quad \text{General of Prop 8.3}\]

\(a)\ a = x^2 \equiv -x^2 \pmod{n}\)

\(b)\ \left(\frac{a}{n}\right) = 1\), as \(p, q\) are known, calculate \(\left(\frac{a}{n}\right)\) use Prop 9.10

\(c)\ p, q\ are known. If \(p, q \equiv 3 \pmod{4}\) (see Prop 9.3 / Prop 9.4), otherwise there exists a probabilistic alg. for solving \(x^2 \equiv a \pmod{p, q}\)

\[\text{Remark 9.17}\]

\(a)\) There is no known efficient alg. for solving \(\text{QRSP}(a, \alpha, n)\)
(b) Common belief: \(\text{QRSP}(a, \alpha, n)\) is no harder than factoring, i.e.,
\[\text{QRSP}(a, \alpha, n) \rightarrow \text{FAC}(n)\]

Deterministic PK schemes have the following drawbacks:

- It is sometimes easy to compute partial information. For example in RSA: \(c = m^e \pmod{n}\). It holds
\[(\frac{c}{n}) = (\frac{m^e}{n}) = (\frac{m}{n})^e = (\frac{m}{n})\]

\[\text{Remark 9.9 a)}\]

To avoid such information leakage, probabilistic PK encryption is utilized.

- Key generation
 (i) Choose large primes p, q, $n = p \cdot q$
 (ii) Choose $y \in \mathbb{Z}_n$, with a quadratic non-residue (QNR) mod n and $(\frac{y}{n}) = 1$ (such y is called pseudo-square)
 (iii) Public key (n, y), private key (p, q)

- Encryption
 Message $m = (m_1, ..., m_t) \in \mathbb{Z}_n^t$ (Bitstring)
 Choose δ_k, independent random numbers $x_1, ..., x_t \in \mathbb{Z}_n$
 Let $c_i = \begin{cases} y \cdot x_i^2 \mod n & \text{if } m_i = 1 \\ x_i^2 \mod n & \text{if } m_i = 0 \end{cases}$

- Decryption
 Let $m'_i = \begin{cases} 0 & \text{if } (\frac{c_i}{p}) = 1 \\ 1 & \text{otherwise} \end{cases}$

Prop. 9.12! The decryption above is verified
Proof: (i) $m_i = 0 \Rightarrow c_i = x_i^2 \mod n$, c_i is QNR mod n

Prop. 9.7 c_i (QR mod p) = $(\frac{c_i}{p}) = 1$ \Rightarrow $m_i = 0$
(ii) $m_i = 1 \Rightarrow c_i = y \cdot x_i^2 \mod n$

c_i is pseudo-square mod n, since

$\left(\frac{c_i}{n} \right) = \left(\frac{y}{n} \right) \left(\frac{x_i^2}{n} \right) = \left(\frac{y}{p} \right) \left(\frac{x_i^2}{q} \right) = 1$

Rem. 9.8 $= 1$ Def. Jacobi symbol

-1-
Suppose \(c_i \equiv AR \mod p \Rightarrow \forall \epsilon_1 \in \mathbb{R} \cdot \epsilon_i^2 \mod n \)

\[
\Rightarrow y^2 \equiv \epsilon_i^2 \mod n \\
\Rightarrow y \equiv \epsilon_i \mod n
\]

Hence: \(c_i ' \equiv AR \mod p \) and \(\left(\frac{c_i '}{p} \right) = 1 \)

Prop 9.10: \(\left(\frac{c_i '}{p} \right) \neq 1 \Rightarrow m_i = 1 \text{ is decrypted} \)

Determining pseudo-squares: \(\quad \)

Prop 9.13: Let \(p \geq 2 \) be prime, \(g \equiv PG \mod p \) (a generator of \(\mathbb{Z}_p^* \))

Then: \(a \equiv AR \mod p \Rightarrow a = g^i \mod p \) for some even integer \(i \)

Proof: \(\quad \)

Hence, half of the elements in \(\mathbb{Z}_p^* \) are \(AR \) and the other half are \(QN \mod p \)

Alg. for finding \(QN \ mod \ y \) with \(\left(\frac{y}{p} \right) = 1 \) \(y \) as a pseudo square:

1. Choose \(a \in \mathbb{Z}_p^* \), \(a \equiv AR \mod p \)
2. Choose \(b \in \mathbb{Z}_q^* \), \(b \equiv QN \mod q \)

By choose \(a \) \((a, b) \) at random until \(\left(\frac{a}{p} \right) = -1 \left(\frac{b}{q} \right) = -1 \)

Success probability is \(\frac{1}{2} \) in each trial.

2. Compute \(y \in \{0, 1, \ldots, 2^n - 1\} \) \(\mathbb{Z}_n \), with

\[
y \equiv a \mod p
\]

\[
y \equiv b \mod q
\]

by the CRT. It follows

\[
y \equiv \left(\frac{y}{p} \right) \cdot \left(\frac{y}{q} \right) \equiv (1) \cdot (-1) = -1
\]

Hence \(y \) is a pseudo square.
Security of the GM cryptosystem

An opponent intercepts $c_i = \left\{ \begin{array}{ll} Y \cdot t_i^1 \mod n & \text{if } m_i = 1 \\ t_i^2 \mod n & \text{if } m_i = 0 \end{array} \right.$

hence, a random QR or pseudosquare mod n.

To decide whether $m_i = 0$ or 1, one needs to solve $QR P (t_i \mod n)$. If $QR P$ is computationally infeasible then O cannot do better than guessing m_i.

Lemma 3.14

A major drawback of the GM cryptosystem is the message expansion by a factor of $\log_2 \ln n$ bits. To ensure security we should have 1024 bits.