10.2 Construction of Hash Function

Construction principles of most hash functions:

\[h_0 = 1V \quad \text{(Initial Value)} \]
\[h_i = g(h_{i-1}, M_i) \quad i = 1, \ldots, N \]
\[h_N = h(m) \quad \text{hash value of } m \]

Some hash functions of this type are:

- **MDS**
 - Revert (1942), 128 bit hash length
- **SHA-1**
 - Successor of SHA (Secure Hash Standard)
 - NIST, 1993, 160 bit length
- **SHA-256 / SHA-384 / SHA-512**
 - NIST, 2001, 256, 384, 512 bits of hash length
- **FIPS 180-2** (Federal Information Processing Standard)
 - Standard from Aug. 2002, contains the SHA-family, particularly SHA-3

Description of SHA-1

\[M_i \text{: has length 512 bits} \]

1) Operation on words of 32 bits:

- \(A \& B, A \lor B, A \oplus B \)
 - bitwise and, or, xor
- \(\neg A \)
 - bitwise complement
- \(A + B \)
 - addition modulo \(2^{32} \)
- \(\text{ROT L}^4(A) \)
 - cyclic shift to the left by 4 bits
- \(A || B \)
 - concatenation of A and B
b) Padding of message m to a length $n \cdot t \leq 512$ bits

Note: $|m| \leq 2^{64} - 1$ is assumed ($1 m$: length of m)

SHA-1-PAD (m):

<table>
<thead>
<tr>
<th>m</th>
<th>10...</th>
<th>0</th>
<th>$1 m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>448 bits</td>
<td>64 bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Append a single 1 to m
2) Concatenate 0's of length n to m until a total length is computed as 448 mod 512
3) Concatenate length of m with 64 bits, i.e., leading zeros are included

c) Functions and constants in SHA-1:

- $f_i (B, C, D) = \begin{cases} (B \land C) \lor (\neg B \land D) & 0 \leq i \leq 19 \\ B \oplus C \oplus D & 20 \leq i \leq 39 \\ (B \land C) \lor (B \land D) \lor (C \land D) & 40 \leq i \leq 59 \end{cases}$

- $k_i = \begin{cases} \text{5 A 8 2 F 9 9 9} & 0 \leq i \leq 19 \\ \text{6 E D 9 E B 4 1} & 20 \leq i \leq 39 \\ \text{8 F 7 B B C D C} & 40 \leq i \leq 59 \\ \text{C A 6 2 C 1 O 6} & 60 \leq i \leq 79 \end{cases}$

d) Algorithm SHA-1 (see lecture notes)

Severe problems with hash functions have been demonstrated, including recommendations by the NIST from 2005:

- Don't use MD4 or MD5 anymore
- Find alternatives for SHA-1 until 2010, don't use it afterwards

Shamir has suggested to develop a complete redesign of hash functions elsewhere AFS
Nov 2007 NIST put out a call for developing a new hash fed.
Oct 2012 end of competition, similar to AES
Winner "Keccak" published as NIST FIPS 202, contains
"SHA-3 standard"

Keccak developed by Daemen et al.
Finalists were
BLAKE (Rijmen et al.)
Grøstl (Knuutila et al.)
SHAKE (Honghun Win)
Keccak (Daemen et al.)
Skein (Schnorr et al.)

- Extension of construction principle
- Division in "rate" and "capacity" part of hash function
- Distinction between absorbing phase (message blocks are used)
 and squeezing phase (generates output)
11 Digital Signatures

Method of signing a message in electronic form
required (same as an conventional signature)

- forge - proof
- verifiable (proof of ownership)
- firmly connected to document

Problem for certain applications: repeated use of copies
Ex: Signed digital message for money transfer
Countermeasure against repeated use: time stamps

Attacks on signature schemes:

- Key only attack (Oscar knows the public key only)
- Known message attack (Oscar knows signatures for a set of messages)
- Chosen message attack (Oscar obtains signatures for a set of chosen messages)

Attacks may result in:

- Total break (O can sign any message)
- Selective forgery (O can sign a particular class of messages)
- Existential forgery (O can sign at least one message)

Known from Cryptography I: RSA signature scheme

Oscar signs with public key \((e, n)\)
private key \(d\)

\[c = [h(m)]^d \mod n \]

Verification: \(h(m) = c^e \mod n \)

Presented: Cryptography I: El Gamal signature scheme
11.1 ElGamal signature scheme

Parameters: \(p, p \), a prime, \(a \), a \(\mathbb{F} \) mod \(p \), \(h \), hash function

Select random \(x \), \(1 < y < \) mod \(p \)

Public key: \((p, a, y) \)
Private key: \(x \)

Signature generation:
Select random \(k \)
\[r = a^k \mod p \]
\[c = k^{-1}(h(m) - x \cdot r) \mod p - 1 \]

Signature for \(m \): \((r, c) \)

Remark: \(k^{-1} \cdot r, x \cdot r \) can be computed in advance

Verification: Verify \(1 \leq r \leq p - 1 \)

\[V_1 = y^r \cdot r^c \mod p \]
\[V_2 = a^{h(m)} \mod p \]

If \(V_1 = V_2 \) we accept signature

Verification works:
Hence \(V_1 \equiv y^r \cdot r^c \equiv a^{k \cdot x \cdot r + h(m)} \equiv a^{k \cdot (p-1) + h(m)} \equiv V_2 \) (mod \(p \))

(\#): from (\#): \(k \cdot c \equiv h(m) - x \cdot r \) \(\equiv h(m) \equiv k \cdot x + x \cdot r \) (mod \(p \))

(\#) \(x \cdot r + x \cdot k \equiv k \cdot (p-1) + h(m) \) for some \(k \in \mathbb{Z} \)
Security,
a) Don't use the same key twice! Otherwise
\[\begin{align*}
\sigma_1 &= b^{-1} (h(m_1) - x \cdot r) \mod p-1 \\
\sigma_2 &= b^{-1} (h(m_2) - x \cdot r) \mod p-1
\end{align*} \]

\[= (\sigma_1 - \sigma_2) \cdot b \equiv h(m_1) - h(m_2) \pmod{p-1} \]

\[= b \equiv (\sigma_1 - \sigma_2)^{-1} (h(m_1) - h(m_2)) \pmod{p-1} \]

provided \((\sigma_1 - \sigma_2)^{-1} \pmod{p-1}\) exists, but it exists with high probability.

Once \(b \) is known it can be determined from (2) or (3), if \(r \) is invertible, which is the case with high probability.
b) Oscar can forge a signature on a hashed message as follows:

Select any pair \((x, v) \) s.t \(g \cdot c \cdot d \cdot (v, p-1) \equiv 1 \)

Compute \(r = a^x \cdot v \equiv a^x + v \cdot v \pmod{p} \)

\[\sigma = -r \cdot v^{-1} \pmod{p-1} \]

Then \((\sigma, v) \) is a valid signature for \(h(m) \equiv c \cdot u \pmod{p-1} \)

Proof:
\[V_1 = g^r \cdot c^x \equiv a^{x+r} \cdot (a+x \cdot v) \pmod{p} \]
\[\equiv a^{x+r} - a^x \cdot v \cdot v^{-1} - a^x \cdot v \cdot v^{-1} \pmod{p} \]
\[\equiv a^x \cdot v \cdot v^{-1} \pmod{p} \]

\[V_2 = a \cdot h(m) \equiv a^x \cdot v \equiv a^x \cdot v \cdot v^{-1} \cdot u \equiv v_1 \pmod{p} \]

\[\Rightarrow V_1 = V_2 \]