Problem 1. *(Decipher Blum-Goldwasser)* Bob receives the following cryptogram from Alice:

\[c = (10101011100001101000101110010111100110111000, x_{t+1} = 1306) \]

The message \(m \) has been encrypted using the Blum-Goldwasser cryptosystem with public key \(n = 1333 = 31 \cdot 43 \). The letters of the Latin alphabet \(A, \ldots, Z \) are represented by the following 5 bit scheme: \(A = 00000, \ B = 00001, \ldots, Z = 11001 \). Decipher the cryptogram \(c \).

Remark: The security requirement to use at most \(h = \lfloor \log_2 \lfloor \log_2 (n) \rfloor \rfloor \) bits of the Blum-Blum-Shub generator is violated in this example. Instead, 5 bits of the output are used.

Problem 2. *(Blum-Blum-Shub generator)* The security of the Blum-Blum-Shub generator is based on the difficulty to compute square roots modulo \(n = pq \) for two distinct primes \(p \) and \(q \) with \(p, q \equiv 3 \mod 4 \).

Design a generator for pseudo-random bits which is based on the hardness of the RSA-problem.

Problem 3. *(Basic requirements for cryptographic hash functions)* Using a block cipher \(E_K(x) \) with block length \(k \) and key \(K \), a hash function \(h(m) \) is provided in the following way.

Append \(m \) with zero bits until it is a multiple of \(k \), divide \(m \) into \(n \) blocks of \(k \) bits each.

\[
\begin{align*}
c \leftarrow E_{m_0}(m_0) \\
\text{for } i \text{ in } 1 \ldots (n - 1) \text{ do} \\
\quad c \leftarrow c \oplus E_{m_0}(m_i) \\
\text{end for} \\
h(m) \leftarrow c
\end{align*}
\]

The operator \(\oplus \) denotes bitwise adding modulo 2, or in other words XOR.

a) Does this function fulfill the basic requirements for a cryptographic hash function?

b) Does this function fulfill the basic requirements for a cryptographic hash function, if the operator XOR (\(\oplus \)) is replaced by AND (\(\odot \)), i.e., bitwise multiplication modulo 2?

c) Why is the replacement of XOR by AND a bad idea?