Problem 1. *(CBC and CFB for MAC generation)* Both, the CBC mode and the CFB mode, can be used for the generation of a MAC as follows.

- A plaintext is divided into \(n \) equally-sized blocks \(M_1, \ldots, M_n \).
- For the CFB-MAC, the ciphertexts are \(C_i = M_{i+1} \oplus E_K(C_{i-1}) \) for \(i = 1, \ldots, n-1 \) and \(\text{MAC}_K^{(n)} = E_K(C_{n-1}) \) with initial value \(C_0 = M_1 \).
- For the CBC-MAC, the ciphertexts are \(\hat{C}_i = E_K(\hat{C}_{i-1} \oplus M_i) \) for \(i = 1, \ldots, n-1 \) and \(\hat{\text{MAC}}_K^{(n)} = E_K(\hat{C}_{n-1} \oplus M_n) \) with initial value \(\hat{C}_0 = 0 \).

Show that the equivalency \(\text{MAC}_K^{(n)} = \hat{\text{MAC}}_K^{(n)} \) holds.

Problem 2. *(Forging an ElGamal signature for arbitrary hashed messages with \(r \geq p \))* An attacker has intercepted one valid signature \((r, s)\) of the ElGamal signature scheme and a hashed message \(h(m) \) which is invertible modulo \(p - 1 \). Let \(h(m') \) any hashed message, \(u = h(m')(h(m))^{-1} \mod p - 1 \) and \(s' = su \mod p - 1 \).

Show that the attacker can generate a signature \((r', s')\) for the hashed message \(h(m') \), if \(1 \leq r' < p \) is not verified.

Problem 3. *(Forging an ElGamal signature)* Let \(p \) be prime with \(p \equiv 3 \pmod{4} \), and let \(a \) be a primitive element modulo \(p \). Furthermore, let \(y = a^x \mod p \) be a public ElGamal key and let \(a \mid p-1 \). Assume that it is possible to find \(z \in \mathbb{Z} \) such that \(a^{gz} \equiv y^r \pmod{p} \).

Show that \((r, s)\) with \(s = (p-3)2^{-1}(h(m) - rz) \mod (p-1) \) yields a valid ElGamal signature for some \(r \) and a chosen message \(m \) with \((h(m) - rz) \) is even.