Problem 1. *(Variations of the ElGamal signature scheme)* The ElGamal signature scheme computes the signature as \(s = k^{-1}(h(m) - xr) \mod (p - 1) \). Consider the following variations of the ElGamal signature scheme.

- **a)** Consider the signing equation \(s = x^{-1}(h(m) - kr) \mod (p - 1) \).
 Show that \(a^{h(m)} \equiv y^s r^r \mod p \) is a valid verification procedure.

- **b)** Consider the signing equation \(s = xh(m) + kr \mod (p - 1) \).
 Propose a valid verification procedure.

- **c)** Consider the signing equation \(s = xr + kh(m) \mod (p - 1) \).
 Propose a valid verification procedure.

Problem 2. *(DSA parameter generation algorithm)* Consider the parameter generation algorithm of DSA. It provides a prime \(2^{159} < q < 2^{160} \) and an integer \(0 \leq t \leq 8 \) such that for prime \(p \), \(2^{511+64t} < p < 2^{512+64t} \) and \(q \mid p - 1 \) holds.

The following scheme is given:

1. Select a random \(g \in Z_p^* \)
2. Compute \(a = g^{\frac{p-1}{q}} \mod p \)
3. If \(a = 1 \), go to label (1) else return \(a \)

Prove that \(a \) is a generator of the cyclic subgroup of order \(q \) in \(Z_p^* \).

Problem 3. *(DSA hash function)* For the security of DSA a hash-function is mandatory. Show that it is possible to forge a signature of a modified scheme where no cryptographic hash function is used.

Hint: A related attack is provided in the lecture notes for the ElGamal signature scheme.
Problem 4. (Probabilistic algorithm for a pair of primes for DSA)

a) Suggest a probabilistic algorithm to determine a pair of primes \(p, q \) with

\[
2^{159} < q < 2^{160},
\]
\[
2^{1023} < p < 2^{1024},
\]
\[
q \mid p - 1.
\]

b) What is the success probability of your algorithm?

Hint: Assume the unproven statement that the number of primes of the form \(kq + 1, k \in \mathbb{N} \), is asymptotically the number given by the „prime number theorem“ divided by \(q \).