Exercise 4.

Given is a bit sequence \(k = (k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8) \in \mathbb{Z}_2^8 \) of length 8 and a permutation \(\pi \) of the numbers 1, \ldots, 8. Consider the following function:

\[
E : \mathbb{Z}_2^8 \rightarrow \mathbb{Z}_2^8, (m_1, \ldots, m_8) \mapsto (m_{\pi(1)} \oplus k_1, \ldots, m_{\pi(8)} \oplus k_8).
\]

Here \(\oplus \) denotes addition modulo 2.

(a) What are the cardinalities of the plaintext space \(\mathbb{Z}_2^8 \) and of the ciphertext space \(\mathbb{Z}_2^8 \)?

(b) Show, that \(E \) can be used as an encryption function.

(c) What is the key space and what is its cardinality?

(d) Determine the decryption function.

Exercise 5.

(a) Prove the following equivalence:

\[A \in \mathbb{Z}_{n}^{m \times m} \text{ is invertible } \iff \gcd(n, \det(A)) = 1. \]

Hint: To show “\(\Leftarrow \)”, use \(A^{-1} = \det(A)^{-1}\text{adj}(A) \), where \(\text{adj}(A) \) denotes the adjugate of \(A \).

(b) Is the following matrix invertible? If yes, compute the inverse matrix.

\[
M = \begin{pmatrix} 7 & 1 \\ 9 & 2 \end{pmatrix} \in \mathbb{Z}_{26}^{2 \times 2}.
\]

Exercise 6. The following alphabet with 29 elements

\[X = \{A, B, \ldots, Z, \#, *, -\} \]

can be identified with \(\mathbb{Z}_{29} = \{0, 1, \ldots, 28\} \). Suppose the blocklength is \(m = 2 \). Decrypt the ciphertext \(Y \ J \ G \ - \ H \ T \) which is encrypted by a Hill cipher with

\[
U = \begin{pmatrix} 3 & 13 \\ 22 & 15 \end{pmatrix} \in \mathbb{Z}_{29}^{2 \times 2}.
\]