Exercise 23. There are four so called *weak* DES keys. One of those is the key

\[K = 00011111 \ 00011111 \ 00011111 \ 00011111 \ 00001110 \ 00001110 \ 00001110 \ 00001110. \]

What happens if you use this key? Can you find the other three weak keys?

Exercise 24. A block cipher is a cryptosystem where plaintext and ciphertext space are the set \(A^n \) of words of length \(n \) over an alphabet \(A \). The number \(n \) is called the block length.

Show that the encryption functions of block ciphers are permutations. How many different block ciphers exist if \(A = \{0, 1\} \) and the block length is \(n = 6 \)?

Exercise 25. Consider the following AES-128 key given in hexadecimal notation:

\[K = 2d \ 61 \ 72 \ 69 \ 65 \ 00 \ 76 \ 61 \ 6e \ 00 \ 43 \ 6c \ 65 \ 65 \ 66 \]

a) What is the round key \(K_0 \)?

b) What are the first 4 bytes of round key \(K_1 \)?

Exercise 26. Within the step MixColumns of the AES algorithm a vector \(r \) is given by \(r = Tc \) with \(c = (c_0, c_1, c_2, c_3)' \), \(c_i \in \mathbb{F}_{2^8}[x] \), and

\[
T = \begin{pmatrix}
 x & (x+1) & 1 & 1 \\
 1 & x & (x+1) & 1 \\
 1 & 1 & x & (x+1) \\
 (x+1) & 1 & 1 & x \\
\end{pmatrix}.
\]

Show \((c_3u^3 + c_2u^2 + c_1u + c_0)((x+1)u^3 + u^2 + u + x) = r_3u^3 + r_2u^2 + r_1u + r_0 \ mod \ u^4 + 1.\)