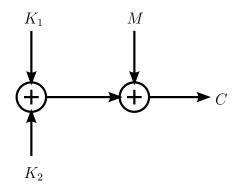
Lehrstuhl für Theoretische Informationstechnik

Review Exercise Cryptography I

Prof. Dr. Rudolf Mathar, Michael Reyer, Georg Böcherer, Steven Corroy, Henning Maier 01.08.2011, WSH 24 A 407, 14:00h

Problem 1.

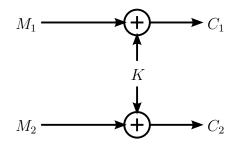
RNTHAACHE



In the encryption system above, the message M and the two keys K_1 and K_2 are binary valued in $\{0,1\}$ and addition is taken modulo 2. The message M and the key K_1 are uniformly distributed. The key K_2 has the distribution $P(K_2 = 0) = p$, $P(K_2 = 1) = 1-p$, 0 . <math>M, K_1 , and K_2 are stochastically independent. Use dual logarithm in your calculations.

- (a) Derive the distribution of $K_1 \oplus K_2$ and derive the distribution of C.
- (b) For which values of p does the system have perfect secrecy?
- (c) Show that the message equivocation H(M|C) is greater than the key equivocation $H(K_2|C)$.

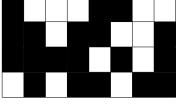
Consider now the following system.



The message is $\mathbf{M} = (M_1, M_2)$ and the ciphertext is $\mathbf{C} = (C_1, C_2)$. M_1 and M_2 are binary and uniformly distributed. The key K is also binary and uniformly distributed. M_1, M_2 , and K are stochastically independent. The addition is modulo 2.

- (d) Specify the encryption function e and the decryption function d of the displayed system. Does this system satisfy the formal definition of a cryptosystem?
- (e) Calculate the equivocations $H(M_1|C_1)$ and $H(M_2|C_2)$.
- (f) Does the system have perfect secrecy?

Problem 2.



IP												
8	7	6	5	1	2	3	4					
13	14	15	16	9	10	11	12					
17	18	19	20	21	22	23	24					
25	26	27	28	29	30	31	32					

Figure 1: Encrypted picture C

Figure 2: Initial permutation IP

The 4×8 pixels of the encrypted picture in Figure 1 are numbered as $C = (c_1, \ldots, c_{32})$ from top-left to bottom-right, row by row. A black pixel has the binary value one and a white pixel the value zero. In the following, all numbers are given as hexadecimal values.

The encryption procedure of the used block cipher has the following structure:

(1) Four 8-bit subkeys K_1, \ldots, K_4 are generated from a 16-bit key $K = (k_1, \ldots, k_{16})$. For subkey $K_1 = (k_{1,1}, \ldots, k_{1,8})$, first, expansion E is applied to k_1, \ldots, k_4 . Then, S-box S_1 is applied on the first four bits of the output, providing bits $k_{1,1}, k_{1,2}$ and on the last four bits providing $k_{1,3}, k_{1,4}$, respectively. Analogously, S-box S_2 is used for bits $k_{1,5}, k_{1,6}$ and $k_{1,7}, k_{1,8}$. The first two bits specify the row, the last two bits the column of the S-box. The remaining subkeys are computed from k_5, \ldots, k_{16} .

$$E: (4\ 1\ 2\ 3\ 2\ 3\ 4\ 1), \ S_1 = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 0 & 2 \end{pmatrix}, \ S_2 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 2 & 1 & 0 \\ 1 & 2 & 0 & 3 \end{pmatrix}$$

- (2) The initial permutation (IP) given in Figure 2 is applied to the 32 input bits M. The output is denoted by \widehat{M} .
- (3) Each row i = 1, ..., 4 of 8 bits is considered as a submessage \widehat{M}_i of \widehat{M} . The \widehat{M}_i are encrypted according to the *counter mode*. The encryption function of a 8-bit value X is given as $E_{K_i}(X) = \text{ROTL}(X \oplus K_i, 4, 8)$. The operation ROTL(W, k, n) is defined as cyclic left shift of k-bits of an n-bit input W. The output is \widehat{C} .
- (4) The inverse permutation IP^{-1} is applied to the 32 output bits \widehat{C} of step (3). The output generated here is the final ciphertext C.

Solve the following problems:

- (a) Generate the first subkey K_1 from K = 0xB47F as described in step (1).
- (b) Compute the inverse permutation IP^{-1} to the given IP.
- (c) Specify the corresponding decryption procedure of this block cipher. Omit the key generation, i.e., subkeys $K_1 \ldots, K_4$ may be utilized directly.

- (d) Decipher the encrypted image of Figure 1 using the following new subkeys $K_1 = 0x39$, $K_2 = 0x64$, $K_3 = 0x77$ and $K_4 = 0x1C$. The initial counter value is set to value $Z_1 = 0x4C$. Furthermore, use Figure 3 for your solution.
- (e) What other modes of operation do you know?

Figure 3: Decrypted picture

Problem 3.

Alice and Bob use RSA to exchange information. Bob generates two numbers p = 11 and q = 349 and calculates n = pq.

- (a) The numbers p and q must be prime. Bob wants to check their primality using the Miller-Rabin primality test. Show that 3 is not a strong witness for the compositeness of q. Can you conclude that q is prime?
- (b) Bob chooses the private exponent d = 37. Calculate the public exponent e of Bob.
- (c) Alice wants to send the message m = 44 to Bob. Determine the ciphertext c transmitted by Alice.

Bob transmits several messages $(m_1, m_2, ...)$ to Alice using the public key n = 119. For each message m_i , Bob uses the exponents (d_i, e_i) . Eve wants to decrypt the communication between Alice and Bob. Eve has an oracle which returns the correct decryption exponent d given e and n.

- (d) Explain how Eve can use the oracle to determine p and q.
- (e) Compute p and q given $d_1 = 5$ corresponding to $e_1 = 77$ and $d_2 = 13$ corresponding to $e_2 = 37$.