Problem 13. (Demo perfect secrecy) Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem. Suppose that $P(\hat{M} = M) > 0$ for all $M \in \mathcal{M}$, $P(\hat{K} = K) > 0$ for all $K \in \mathcal{K}$ and $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$. Show that if $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy, then

$$P(\hat{K} = K) = \frac{1}{|\mathcal{K}|} \text{ for all } K \in \mathcal{K}$$

for all $M \in \mathcal{M}, C \in \mathcal{C}$, there is a unique $K \in \mathcal{K}$ such that $e(M, K) = C$.

Problem 14. (Perfect secrecy for affine cipher) Consider affine ciphers on \mathbb{Z}_{26}, i.e., $\mathcal{M} = \mathcal{C} = \mathbb{Z}_{26}$ and $\mathcal{K} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26} = \{(a, b) \mid a, b \in \mathbb{Z}_{26}, \gcd(a, 26) = 1\}$. Select the key \hat{K} uniformly distributed at random and independently from the message \hat{M}.

Show that this cryptosystem has perfect secrecy.

Problem 15. (Entropy and key equivocation) Let $\mathcal{M} = \{a, b\}$ be the message space, $\mathcal{K} = \{K_1, K_2, K_3\}$ the key space and $\mathcal{C} = \{1, 2, 3, 4\}$ the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K}, respectively, and with probability distributions:

$$P(\hat{M} = a) = \frac{1}{4}, \quad P(\hat{M} = b) = \frac{3}{4}, \quad P(\hat{K} = K_1) = \frac{1}{2}, \quad P(\hat{K} = K_2) = \frac{1}{4}, \quad P(\hat{K} = K_3) = \frac{1}{4}.$$

The following table explains the encryption rules:

<table>
<thead>
<tr>
<th></th>
<th>K_1</th>
<th>K_2</th>
<th>K_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

, e.g., $e(a, K_1) = 1$.

a) Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and the key equivocation $H(\hat{K} | \hat{C})$.

b) Why does this cryptosystem not have perfect secrecy?