Solution of Problem 11
Prove Theorem 4.13 ‘⇒’ (sufficient solution):
Recall that each element of these sets has a positive probability:
\[M_+ := \{ M \in \mathcal{M} | P(\hat{M} = M) > 0 \}, \]
\[C_+ := \{ C \in \mathcal{C} | P(\hat{C} = C) > 0 \}. \]

Lemma 4.12 provides conditions of perfect secrecy on \(\mathcal{M}_+, \mathcal{K}_+, \mathcal{C}_+ \).
With Lemma 4.12 a), we obtain:

\[|\mathcal{M}_+| \leq |\mathcal{C}_+| \overset{(I)}{=} |\mathcal{C}| \overset{(II)}{=} |\mathcal{M}| \overset{(III)}{=} |\mathcal{M}_+|. \]

(I): With \(P(\hat{C} = C) > 0 \Rightarrow C_+ \subseteq \mathcal{C} \).
(II): Given by assumption \(|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|\).
(III): Given by assumption \(P(\hat{M} = M) > 0, \forall M \in \mathcal{M} \).

By the ‘sandwich theorem’, i.e., the upper and lower bounds are both equal to \(|\mathcal{M}_+| \):
\[\Rightarrow |\mathcal{C}_+| = |\mathcal{C}| \Rightarrow \mathcal{C}_+ = \mathcal{C}, \]
\[\Rightarrow P(\hat{C} = C) > 0, \forall C \in \mathcal{C}. \]

Let \(M \in \mathcal{M}, C \in \mathcal{C} \):
\[0 < P(\hat{C} = C) \overset{(IV)}{=} P(\hat{C} = C | \hat{M} = M) = P(\hat{e}(\hat{M}, \hat{K}) = C | \hat{M} = M) \]
\[\overset{(V)}{=} P(\hat{e}(M, \hat{K}) = C) = \sum_{K \in \mathcal{K} : e(M, K) = C} P(\hat{K} = K) \neq 0 \]
\[\Rightarrow \forall M \in \mathcal{M}, C \in \mathcal{C} \exists K \in \mathcal{K} : e(M, K) = C. \]

(IV): With perfect secrecy as given by Corollary 4.11.
(V): Given by the assumption that \(\hat{M}, \hat{K} \) are stochastically independent.
However, (1) is not shown to be unique yet!

(i) Fix \(M \in \mathcal{M} \):
\[|\mathcal{C}_+| = |\mathcal{C}| = |\{ e(M, K) | K \in \mathcal{K}_+ = \mathcal{K} \}| \leq |\mathcal{K}| \overset{(II)}{=} |\mathcal{C}| \]
\[\Rightarrow K \text{ is unique with } K = K(M, C) \text{ by the ‘sandwich theorem’}. \]
(II) Given by assumption $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$.
Let $M \in \mathcal{M}$, $C \in \mathcal{C}$:

$$\Rightarrow P(\hat{C} = C) \stackrel{(1)}{=} P(\hat{K} = K(M, C)),$$

because of perfect secrecy this expression is independent of M.

(ii) Fix $C_0 \in \mathcal{C}$:

$$\Rightarrow \{K(M, C_0) \mid M \in \mathcal{M}\} = \mathcal{K},$$

because of injectivity of $e(\cdot, K)$, i.e., $e(M, K) = C_0$, and by the assumption $|\mathcal{M}| = |\mathcal{C}|$.

$$\Rightarrow P(\hat{C} = C) = P(\hat{K} = K) \quad \forall C \in \mathcal{C}, K \in \mathcal{K}$$

$$\Rightarrow P(\hat{K} = K) = \frac{1}{|\mathcal{K}|} \quad \forall K \in \mathcal{K}. \quad \square$$

Solution of Problem 12

For an affine cipher in \mathbb{Z}_{26}: $e(i, (a, b)) = a \cdot i + b \mod 26$

$$\mathbb{Z}_{26}^* = \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} = \{a \mid \gcd(a, 26) = 1\}$$

$$\Rightarrow |\mathcal{K}| = |\mathbb{Z}_{26}^* \times \mathbb{Z}_{26}| = 12 \cdot 26$$

Let $M \in \mathcal{M}$, $C \in \mathcal{C}$

$$P(\hat{C} = C|M = M) = P(e(\hat{M}, \hat{K}) = C \mid \hat{M} = M)$$

$$(\hat{K}, M \text{ stoch. ind.}) = P(e(M, \hat{K}) = C)$$

$$(\hat{K} \text{ unif. distr.}) = \frac{1}{|\mathcal{K}|} \{K \in \mathcal{K} \mid e(M, K) = C\}$$

$$\Rightarrow \{K \in \mathcal{K} \mid e(M, K) = C\} = 12 \cdot 26$$

$$\Rightarrow \{K \in \mathcal{K} \mid e(M, K) = C\} = \frac{1}{26}$$

$$(*) : e(M, (a, b)) = C \iff a \cdot M + b = C \mod 26 \iff b = C - aM \mod 26$$

$$\Rightarrow \text{all keys } (a, C - aM), a \in \mathbb{Z}_{26}^* \text{ satisfy this equation}$$

$$\Rightarrow P(\hat{C} = C|M = M) = \frac{1}{26} \quad \forall M \in \mathcal{M}_+$$

$$\Rightarrow P(\hat{C} = C) = \frac{1}{26} = P(\hat{C} = C|M = M)$$

With Corollary 4.11, the cryptosystem has perfect secrecy, i.e., \hat{C} and \hat{M} are stochastically independent.
Solution of Problem 13

Recall: $H(X) = -\sum p_i \log(p_i)$.

a) $H(\hat{M}) = -\frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4}) = \frac{1}{2} + \frac{3}{2} - \frac{3}{4} \log_2(3) \approx 0.811$

$H(\hat{K}) = -\frac{1}{2} \log_2(\frac{1}{2}) - 2 \frac{1}{4} \log_2(\frac{1}{4}) = \frac{1}{2} + 1 = 1.5$

<table>
<thead>
<tr>
<th></th>
<th>K_1</th>
<th>K_2</th>
<th>K_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
</tr>
</tbody>
</table>

\[
P(\hat{C} = 1) = P(\hat{M} = a) \cdot P(\hat{K} = K_1) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}
\]

\[
P(\hat{C} = 2) = P(\hat{M} = a) \cdot P(\hat{K} = K_2) + P(\hat{M} = b) \cdot P(\hat{K} = K_1) = \frac{1}{4} \cdot \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{2} = \frac{7}{16}
\]

\[
P(\hat{C} = 4) = P(\hat{M} = b) \cdot P(\hat{K} = K_3) = \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{16}
\]

\[
\Rightarrow P(\hat{C} = 3) = 1 - P(\hat{C} = 1) - P(\hat{C} = 2) - P(\hat{C} = 4) = 1 - \frac{2}{16} - \frac{7}{16} - \frac{3}{16} = \frac{4}{16}
\]

\[
\Rightarrow H(\hat{C}) = -\frac{1}{8} \log_2(\frac{1}{8}) - \frac{7}{16} \log_2(\frac{7}{16}) - \frac{3}{16} \log_2(\frac{3}{16}) - \frac{1}{4} \log_2(\frac{1}{4}) \approx 1.850
\]

\[
\Rightarrow H(\hat{K} | \hat{C}) \text{ Thm. 4.7} H(\hat{M}) + H(\hat{K}) - H(\hat{C}) \approx 0.811 + 1.5 - 1.850 = 0.461
\]

b) Lem. 4.12 b) demands $|C_+| \leq |K_+|$ for perfect secrecy.
But in this case, we get $4 = |C_+| > |K_+| = 3 \frac{1}{4}$