Solution of Problem 24

Let \(\varphi : \mathbb{N} \to \mathbb{N} \) the Euler \(\varphi \)-function, i.e., \(\varphi(n) = \left| \mathbb{Z}_n^* \right| \) with \(\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \} \).

a) Let \(n = p \) be prime. It follows for the multiplicative group that:
\[
\mathbb{Z}_p^* = \{ a \in \mathbb{Z}_p \mid \gcd(a, p) = 1 \} = \{ 1, 2, \ldots, p - 1 \} \Rightarrow \varphi(p) = p - 1.
\]

b) The power \(p^k \) has only one prime factor. So \(p^k \) has a common divisors that are not equal to one: These are only the multiples of \(p \). For \(1 \leq a \leq p^k \):
\[
1 \cdot p, \quad 2 \cdot p, \quad \ldots, \quad p^{k-1} \cdot p = p^k.
\]
And it follows that
\[
\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p - 1).
\]

c) Let \(n = pq \) for two primes \(p \neq q \). It holds for \(1 \leq a < pq \)
\[
1) \ p \mid a \lor q \mid a \Rightarrow \gcd(a, pq) > 1, \text{ and } \\
2) \ p \nmid a \land q \nmid a \Rightarrow \gcd(a, pq) = 1.
\]
It follows \(\mathbb{Z}_{pq}^* = \{ 1 \leq a \leq pq - 1 \} \setminus \left(\{ 1 \leq a \leq pq - 1 \mid p \mid a \} \cup \{ 1 \leq a \leq pq - 1 \mid q \mid a \} \right) \).
Hence: \(\varphi(pq) = (pq - 1) - (q-1) - (p-1) = pq - p - q + 1 = (p-1)(q-1) = \varphi(p) \cdot \varphi(q) \).

d) Apply the Euler phi-function on \(n \) with the following steps:
1. Factorize all prime factors of the given \(n \)
2. Apply the rules in a) to c), correspondingly.
\[
\varphi(4913) = \varphi(17^3) = 17^2(17 - 1) = 17^2 \cdot 16 = 4624, \text{ and } \\
\varphi(899) = \varphi(30^2 - 1^2) = \varphi((30 - 1)(30 + 1)) = \varphi(29 \cdot 31) = 28 \cdot 30 = 840.
\]
Solution of Problem 25

a) Define event A : 'n composite' $\iff \bar{A}$: 'n prime'.
Define event B : m-fold MRPT provides 'n prime' in all m cases.
From hint: $\text{Prob}(\bar{A}) = \frac{2}{\ln(N)} \Rightarrow \text{Prob}(A) = 1 - \frac{2}{\ln(N)}$ (cf. Thm. 6.7)

Probability for the case that the MRPT fails for m times:
$$\text{Prob}(B \mid A) \leq \left(\frac{1}{4}\right)^m$$

Probability of the MRPT verifying an actual prime is:
$$\text{Prob}(B \mid \bar{A}) = 1$$

Probability of the MRPT wrongly verifying a composite n as prime after m tests is:
$$p = \text{Prob}(A \mid B) = \frac{\text{Prob}(B \mid A) \cdot \text{Prob}(A)}{\text{Prob}(B)} = \frac{\text{Prob}(B \mid A) \cdot \text{Prob}(A)}{\text{Prob}(B \mid A) \cdot \text{Prob}(A) + \text{Prob}(B \mid A) \cdot \text{Prob}(A)} \leq \frac{(\frac{1}{4})^m(1 - \frac{2}{\ln(N)})}{(\frac{1}{4})^m(1 - \frac{2}{\ln(N)}) + 1 \cdot \frac{2}{\ln(N)}} = \frac{\ln(N) - 2}{\ln(N) - 2 + 2^{2m+1}}$$

b) Note that the above function $f(x) = \frac{x}{x+a}$ is monotonically increasing for $x \in \mathbb{R}$, $a > 0$, as its derivative is $f'(x) = \frac{a}{(x+a)^2} > 0$. Let $x = \ln(N) - 2$, and $N = 2^{512}$. Resolve the inequality w.r.t. m:
$$\frac{x}{x + 2^{2m+1}} \leq \frac{1}{1000}$$
$$\iff 2^{2m+1} > 999x$$
$$\iff m > \frac{1}{2}(\log_2(999x) - 1)$$
$$\iff m > \frac{1}{2}(\log_2(999(512 \ln(2) - 2)) - 1)$$
$$\iff m > 8.714.$$

$m = 9$ repetitions are needed to ensure that the error probability stays below $p = \frac{1}{1000}$ for $N = 2^{512}$.
Solution of Problem 26

a) Let \(n \) be odd and composite. The problem is modelled by a geometric distributed random variable \(X \) with:

- Probability of a single test stating ’\(n \) is prime’ although \(n \) is composite is \(p \)
 \(\Rightarrow 1 - p \) for ’\(n \) is composite’
- Probability that after exactly \(M \in \mathbb{N} \) tests, it correctly states ’\(p \) is composite’:
 \[
 \text{Prob}(X = M) = p^{M-1}(1 - p)
 \]

b) The expected value of a geometrically distributed random variable is:

\[
E(X) = \sum_{M=1}^{\infty} M p^{M-1}(1 - p) = (1 - p) \frac{p}{(1 - p)^2} = \frac{p}{1 - p}.
\]

Note that with the geometric series \(\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \), we can compute its derivative w.r.t. \(x \), and obtain \(\sum_{n=1}^{\infty} n x^{n-1} = \frac{x}{(1-x)^2} \), for \(|x| < 1 \).

For the given parameter \(p = \frac{1}{4} \), the expected value for the number of tests stating that a composite \(n \) is indeed composite is:

\[
E(X) = \frac{p}{1 - p} = \frac{1/4}{1 - 1/4} = \frac{1/4}{3/4} = \frac{1}{3}
\]

Solution of Problem 27

a) ”\(\Rightarrow \)” Let \(n \) with \(n > 1 \) be prime. Then, each factor \(m \) of \((n-1)! \) is in the multiplicative group \(\mathbb{Z}_n^* \). Each factor \(m \) has a multiplicative inverse modulo \(n \). The factors 1 and \(n - 1 \) are obviously inverse to themselves. The factorial multiplies all these factors. The entire product must be 1 since all pairs of inverses yield 1.

\[
(n-1)! = \prod_{i=1}^{n-1} i \equiv (n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \equiv (n-1) \equiv -1 \mod n
\]

”\(\Leftarrow \)” Let \(n = ab \) and hence composite with \(a, b \neq 1 \) prime. Thus \(a|n \) and \(a|(n-1)! \).

From \((n-1)! \equiv -1 \Rightarrow (n-1)! + 1 \equiv 0 \), we obtain \(a|((n-1)! + 1) \Rightarrow a|1 \Rightarrow a = 1 \Rightarrow n \) must be prime. \(\sharp \)

b) Compute the factorial of 28:

\[
28! = (28 \cdot 27) \cdot (26 \cdot 25) \cdot (24 \cdot 23) \cdot (22 \cdot 21) \cdot (20 \cdot 19) \cdot (18 \cdot 17) \\
(16 \cdot 15) \cdot (14 \cdot 13) \cdot (12 \cdot 11) \cdot (10 \cdot 9 \cdot 8) \cdot (7 \cdot 6 \cdot 5 \cdot 4) \cdot (3 \cdot 2) \\
= (2 \cdot 12 \cdot 1 \cdot 27 \cdot 3) \cdot (16 \cdot 8 \cdot 8 \cdot 16) \cdot (24 \cdot 28 \cdot 6) \equiv -1 \mod 29
\]

Thus, 29 is prime as shown by Wilson’s primality criterion.

c) Using this criterion is computationally inefficient, since computing the factorial is very time-consuming.