

## Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

## Exercise 5 Friday, May 27, 2016

**Problem 1.** (Perfect secrecy for affine cipher) Consider affine ciphers on  $\mathbb{Z}_{26}$ , i.e.,  $\mathcal{M} = \mathcal{C} = \mathbb{Z}_{26}$  and  $\mathcal{K} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26} = \{(a, b) \mid a, b \in \mathbb{Z}_{26}, \gcd(a, 26) = 1\}$ . Select the key  $\hat{K}$  uniformly distributed at random and independently from the message  $\hat{M}$ .

Show that this cryptosystem has perfect secrecy.

**Problem 2.** (Demo perfect secrecy) Let  $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$  be a cryptosystem. Suppose that  $P(\hat{M} = M) > 0$  for all  $M \in \mathcal{M}$ ,  $P(\hat{K} = K) > 0$  for all  $K \in \mathcal{K}$  and  $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$ . Show that if  $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$  has perfect secrecy, then

$$P(\hat{K} = K) = \frac{1}{|\mathcal{K}|}$$
 for all  $K \in \mathcal{K}$  and

for all  $M \in \mathcal{M}, C \in \mathcal{C}$ , there is a unique  $K \in \mathcal{K}$  such that e(M, K) = C.

**Problem 3.** (*block ciphers are permutations*) A block cipher is a cryptosystem where both plaintext and ciphertext space are the set  $\mathcal{A}^n$  of words of length n over an alphabet  $\mathcal{A}$ .

- a) Show that the encryption functions of block ciphers are permutations.
- b) How many different block ciphers exist if  $\mathcal{A} = \{0, 1\}$  and the block length is n = 6?

**Problem 4.** (*DES Complementation property*) Let M be a block of bits of length 64 and let K be a block of bits of length 56. Let DES(M, K) denote the encryption of M with key K using the DES cryptosystem.  $\overline{x}$  denotes the bitwise complement of a block x.

a) Show that the *complementation property* holds:

$$DES(M, K) = DES(\overline{M}, \overline{K})$$

**b**) How does the complementation property help to attack DES?

## **Problem 5.** (*weak DES keys*) There are four so called *weak* DES keys. One of those keys is $K = 00011111\ 00011111\ 00011111\ 00001110\ 00001110\ 00001110\ 00001110$ .

- a) What happens if you use this key?
- **b)** Can you find the other three weak keys?