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Problem 1. (How not to use the ElGamal cryptoystem) Alice and Bob are using the ElGamal
cryptosystem. The public key of Alice is (p, a, y) = (3571, 2, 2905). Bob encrypts the
messages m1 and m2 as

C1 = (1537, 2192) and C2 = (1537, 1393).

a) Show that the public key is valid.

b) What did Bob do wrong?

c) The first message is given as m1 = 567. Determine the message m2.

Problem 2. (Euler’s criterion) Prove Euler’s criterion (Proposition 9.2): Let p > 2 be prime,
then

c ∈ Z∗
p is a quadratic residue modulo p⇔ c

p−1
2 ≡ 1 mod p .

Problem 3. (properties of quadratic residues) Let p be prime, g a primitive element modulo
p and a, b ∈ Z∗

p. Show the following:

a) a is a quadratic residue modulo p if and only if there exists an even i ∈ N0 with a ≡ gi

mod p.

b) If p is odd, then exactly one half of the elements x ∈ Z∗
p are quadratic residues modulo

p.

c) The product a · b is a quadratic residue modulo p if and only if a and b are both either
quadratic residues or quadratic non-residues modulo p.

Problem 4. (Rabin cryptosystem) Alice and Bob are using the Rabin Cryptosystem. Bob
uses the public key n = 4757 = 67 · 71. All integers in the set {1, . . . , n− 1} are represented
as a bit sequence of 13 bits. In order to be able to identify the correct message, Alice and
Bob agreed to only send messages with the last 2 bits set to 1. Alice sends the cryptogram
c = 1935. Decipher this cryptogram.


