

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 12 Friday, July 15, 2016

Problem 1. (*How not to use the ElGamal cryptoystem*) Alice and Bob are using the ElGamal cryptosystem. The public key of Alice is (p, a, y) = (3571, 2, 2905). Bob encrypts the messages m_1 and m_2 as

 $C_1 = (1537, 2192)$ and $C_2 = (1537, 1393)$.

- a) Show that the public key is valid.
- **b)** What did Bob do wrong?
- c) The first message is given as $m_1 = 567$. Determine the message m_2 .

Problem 2. (Euler's criterion) Prove Euler's criterion (Proposition 9.2): Let p > 2 be prime, then

 $c \in \mathbb{Z}_p^*$ is a quadratic residue modulo $p \Leftrightarrow c^{\frac{p-1}{2}} \equiv 1 \mod p$.

Problem 3. (properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_p^*$. Show the following:

- a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_0$ with $a \equiv g^i \mod p$.
- b) If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_p^*$ are quadratic residues modulo p.
- c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 4. (*Rabin cryptosystem*) Alice and Bob are using the Rabin Cryptosystem. Bob uses the public key $n = 4757 = 67 \cdot 71$. All integers in the set $\{1, \ldots, n-1\}$ are represented as a bit sequence of 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1. Alice sends the cryptogram c = 1935. Decipher this cryptogram.