Problem 1. (Weak public-key cryptosystem) Consider the following insecure cryptosystem: Alice secretly chooses four integers \(a, b, a', b' \in \mathbb{N} \), with \(a > 1, b > 1 \), and computes:

\[
M = ab - 1, \quad e = a'M + a, \quad d = b'M + b, \quad n = \frac{ed - 1}{M}.
\]

Her public key is \((n, e)\), her private key is \(d\). To encrypt a plaintext \(m \), Bob uses the map \(c = em \mod n \). Alice decrypts the ciphertext received from Bob by \(m = cd \mod n \).

a) Verify that the decryption operation recovers the plaintext.

b) How can the Euclidean algorithm be applied to break the cryptosystem.

Problem 2. (modified Rabin cryptosystem) Consider the modification of the Rabin Cryptosystem in which \(e_K(m) = c = m \cdot (m + B) \mod n \), where \(B \in \mathbb{Z}_n \) is part of the public key. Supposing that \(p = 199 \), \(q = 211 \), \(n = pq \), and \(B = 1357 \), perform the following computations.

a) Compute the encryption \(y = e_K(32767) \).

b) Determine the four possible decryptions of this given ciphertext \(y \).

Problem 3. (forging an ElGamal signature with hash function) An attacker has intercepted one valid signature \((r, s)\) of the ElGamal signature scheme and a hashed message \(h(m) \) which is invertible modulo \(p - 1 \).

Show that the attacker can generate a signature \((r', s')\) for any hashed message \(h(m') \), if \(1 \leq r < p \) is not verified.