Exercise 2
- Proposed Solution -
Friday, April 29, 2016

Solution of Problem 1
It is helpful to organize the plaintext \(m = (m_1, m_2, m_3, ..., m_{kl}) \) in a matrix with \(l \) rows and \(k \) columns as shown on the left hand side. The second matrix on the right hand side describes the mapping of the positions to the ciphertext.

\[
\begin{pmatrix}
m_1 & m_{l+1} & \cdots & m_{(k-1)l+1} \\
m_2 & \cdots & \cdots & \vdots \\
\vdots & \cdots & \cdots & \vdots \\
\vdots & \cdots & m_{kl-1} & \vdots \\
m_l & \cdots & m_{kl} & (l-1)k+1 & \cdots & (l-1)k \\
\end{pmatrix}
\begin{pmatrix}
1 & 2 & \cdots & k \\
k+1 & \cdots & \cdots & \vdots \\
\vdots & \cdots & \cdots & \vdots \\
\vdots & \cdots & \vdots & (l-1)k \\
(l-1)k+1 & \cdots & (l-1)k & kl \\
\end{pmatrix}
\]

From this the encryption of the Scytale is described by a permutation \(\pi \) with:

\[
\pi =
\begin{pmatrix}
1 & 2 & \cdots & l & l+1 & \cdots & (k-1)l+1 & \cdots & kl-1 & kl \\
1 & k+1 & \cdots & (l-1)k+1 & 2 & \cdots & k & \cdots & (l-1)k & kl \\
\end{pmatrix}
\]

Solution of Problem 2

a) Applying the \(n \) encryption functions successively results in:

\[
c_1 \equiv a_1 m + b_1 \mod q \\
c_2 \equiv a_2 c_1 + b_2 \equiv a_2(a_1 m + b_1) + b_2 \\
\equiv a_2 a_1 m + a_2 b_1 + b_2 \mod q \\
c_3 \equiv a_3 c_2 + b_3 \\
\equiv a_3(a_2 a_1 m + a_2 b_1 + b_2) + b_3 \\
\equiv a_3 a_2 a_1 m + a_3 a_2 b_1 + a_3 b_2 + b_3 \mod q \\
\vdots \\
c_n \equiv \prod_{i=1}^{n} a_i m + \sum_{i=1}^{n-1} b_i(\prod_{j=i+1}^{n-1} a_j) + b_n \mod q \\
\equiv \prod_{i=1}^{n} a_i m + \sum_{i=1}^{n} b_i(\prod_{j=i+1}^{n} a_j) \mod q
\]

using the definition of the empty product in the last step.
Note: A complete mathematical proof would involve the induction \(n \rightarrow n + 1 \):

\[
c_{n+1} \equiv \prod_{i=1}^{n+1} a_i m + \sum_{i=1}^{n+1} b_i \prod_{j=i+1}^{n+1} a_j
\]
\[
\equiv a_{n+1} \prod_{i=1}^{n} a_i m + a_{n+1} \sum_{i=1}^{n} b_i \prod_{j=i+1}^{n} a_j + b_{n+1}
\]
\[
\equiv a_{n+1} c_n + b_{n+1} \quad \Box
\]

b) We obtain an effective key:

\[
k = (a = \prod_{i=1}^{n} a_i \mod q, b = \sum_{i=1}^{n-1} b_i (\prod_{j=i+1}^{n} a_j) + b_n \mod q)
\]

Therefore, successively encrypting with two different affine functions is the same as encrypting with only one effective key \(k = (a, b) \).

Solution of Problem 3

a) Substitution cipher: Keys are permutations over the symbol alphabet \(\Sigma = \{x_0, ..., x_{l-1}\} \).

\(\Rightarrow \) As known from combinatorics, there are \(l! \) permutations, i.e., \(l! \) possible keys.

b) Affine cipher with key \((b, a)\) and with symbols in alphabet \(\mathbb{Z}_{26} \):

\[
c_i = (a \cdot m_i + b) \mod 26
\]
\[
m_i = a^{-1} \cdot (c_i - b) \mod 26
\]

For a valid decryption \(a^{-1} \) must exist. \(a^{-1} \) exists if \(\gcd(a, 26) = 1 \) holds

\(\Rightarrow a \in \mathbb{Z}_{26}^* \). 26 has only 2 dividers as 26 = 13 \cdot 2 is its prime factorization.

\[
\mathbb{Z}_{26}^* = \{a \in \mathbb{Z}_{26} \mid \gcd(a, 26) = 1\} = \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \subset \mathbb{Z}_{26}
\]

\(\Rightarrow |\mathbb{Z}_{26}^*| = 12 \) possible keys for \(a \).

There is no restriction on \(b \in \mathbb{Z}_{26} \), i.e., \(|\mathbb{Z}_{26}| = 26 \) possible keys for \(b \).

Altogether, we have \(|\mathbb{Z}_{26} \times \mathbb{Z}_{26}^*| = |\mathbb{Z}_{26}| \cdot |\mathbb{Z}_{26}^*| = 26 \cdot 12 = 312 \) possible keys \((a, b)\).

c) Permutation cipher with block length \(L \Rightarrow L! \) permutations \(\Rightarrow L! \) possible keys.

Solution of Problem 4

The message space of a finite sequence of length \(k = 11 \) is:

\[
\mathcal{M} = \{(m_1, ..., m_{11}) \mid m_i \in \mathcal{X}\}
\]

with the alphabet \(\mathcal{X} = \{a, b, ..., z\} = \{0, 1, ..., 25\} \), and \(|\mathcal{X}| = 26 \).

In the given task, there are 4 blocks with cyclic permutations. These blocks are not changed if the letters are the same inside each individual block. Unchanged sequences are subsumed by:

\[
\hat{\mathcal{M}} = \{(m_1, ..., m_{11}) \mid m_1 \in \mathcal{X}, m_2 = m_{11} = m_5 = m_8 \in \mathcal{X}, m_3 = m_6 = m_7 = m_4 \in \mathcal{X},
\]
\[
m_9 = m_{10} \in \mathcal{X}\}
\]

The total number of such sequences is \(|\hat{\mathcal{M}}| = |\mathcal{X}|^4 = 456976 \).

Remark: However, compared to \(|\mathcal{M}| = |\mathcal{X}|^{11} \approx 3.6 \cdot 10^{15} \), this is only a minor restriction.

(An unchanged plaintext in English is 'MISSISSIPPI'.)