Problem 1. Let $n \in \mathbb{N}$. If there exists a primitive element modulo n, then there exist $\varphi(\varphi(n))$ many.

Problem 2. (properties of the discrete logarithm) We examine the properties of the discrete logarithm.

a) Compute the discrete logarithm of 18 and 1 in the group \mathbb{Z}_{79}^* with generator 3 (by trial and error if necessary).

b) How many tryings would be necessary to determine the discrete logarithm in the worst case?

Problem 3. (prove Proposition 7.5) Prove Proposition 7.5 from the lecture, which gives a possibility to generate a primitive element modulo n:

Let $p > 3$ be prime, $p - 1 = \prod_{i=1}^{k} p_i^{l_i}$ the prime factorization of $p - 1$. Then,

$$a \in \mathbb{Z}_p^* \text{ is a primitive element modulo } p \iff a^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p} \text{ for all } i \in \{1, \ldots, k\}.$$