Exercise 11
Friday, July 7, 2017

Problem 1. (Shamir no-key protocol) Alice and Bob are using Shamir’s no-key protocol to exchange a secret message. They agree to use the prime \(p = 31337 \) for their communication. Alice chooses the random number \(a = 9999 \) while Bob chooses \(b = 1011 \). Alice’s message is \(m = 3567 \).

a) Calculate all exchanged values \(c_1 \), \(c_2 \), and \(c_3 \) following the protocol.
 Hint: You may use \(6399^{1011} \equiv 29872 \) (mod 31337).

Problem 2. (Proof of 8.3) Let \(n = p \cdot q \), \(p \neq q \) be prime and \(x \) a non-trivial solution of \(x^2 \equiv 1 \) (mod \(n \)), i.e., \(x \neq \pm 1 \) (mod \(n \)).

Then
\[
gcd (x + 1, n) \in \{p, q\}
\]

Problem 3. (RSA encryption) A uniformly distributed message \(m \in \{1, \ldots, n - 1\} \) with \(n = pq \) with two primes \(p \neq q \) is encrypted using the RSA-algorithm with public key \((n, e) \).

a) Show that it is possible to compute the secret key \(d \) if \(m \) and \(n \) are not coprime, i.e., if \(p \mid m \) or \(q \mid m \).

b) Calculate the probability for \(m \) and \(n \) having common divisors.

c) How large is the probability of (b) roughly, if \(n \) has 1024 bits and the primes \(p \) and \(q \) are approximately of same size \((p, q \approx \sqrt{n}) \).