Solution of Problem 1

Theorem 4.3 shall be proven.

a) X is a discrete random variable with $p_i = P(X = x_i), i = 1, \ldots, m$. It holds

$$H(X) = - \sum_i p_i \log(p_i) \geq 0,$$

as $p_i \geq 0$ and $-\log(p_i) \geq 0$ for $0 < p_i \leq 1$ and $0 \cdot \log 0 = 0$ per definition. Equality holds, if all addends are zero, i.e.,

$$p_i \log(p_i) = 0 \Leftrightarrow p_i \in \{0, 1\} \quad i = 1, \ldots, m,$$

as $p_i > 0$ and $-\log(p_i) > 0$, thus, $-p_i \log(p_i) > 0$ for $0 < p_i < 1$.

b) It holds

$$H(X) - \log(m) = - \sum_i p_i \log(p_i) - \sum_{i=1} \sum_{i:p_i>0} p_i \log(m)$$

$$= \sum_{i:p_i>0} p_i \log\left(\frac{1}{p_i \cdot m}\right)$$

$$= (\log e) \sum_{i:p_i>0} p_i \ln\left(\frac{1}{p_i \cdot m}\right)$$

$$\leq \ln(x) \leq x-1$$

$$= (\log e) \sum_{i:p_i>0} p_i \left(\frac{1}{p_i \cdot m} - 1\right)$$

$$= (\log e) \sum_{i:p_i>0} \left(\frac{1}{m} - p_i\right) = 0$$

As $\ln(x) = x - 1$ only holds for $x = 1$ it follows that equality holds iff $p_i = 1/m$, $i = 1, \ldots, m$. In particular, as $p_i = 1/m$, it follows $p_i > 0$, $i = 1, \ldots, m$.

c) Define for $i = 1, \ldots, m$ and $j = 1, \ldots, d$

$$p_{ij} = P(X = x_i \mid Y = y_j).$$
Show $H(X \mid Y) - H(X) \leq 0$ which is equivalent to the claim.

\[
H(X \mid Y) - H(X) = - \sum_{i,j} p_{i,j} \log(p_{i,j}) + \sum_i p_i \log(p_i)
= - \sum_{i,j} p_{i,j} \log \left(\frac{p_{i,j}}{p_j} \right) + \sum_i \sum_j p_{i,j} \log(p_i)
= (\log e) \sum_{i,j: p_{i,j} > 0} p_{i,j} \log \left(\frac{p_i p_j}{p_{i,j}} \right)
\leq (\log e) \sum_{i,j: p_{i,j} > 0} p_{i,j} \left(\frac{p_i p_j}{p_{i,j}} - 1 \right)
= (\log e) \sum_{i,j: p_{i,j} > 0} (p_i p_j - p_{i,j}) = 0
\]

Note that from $p_{i,j} > 0$ it follows $p_i, p_j > 0$. Equality hold for $p_i p_j = p_{i,j}$ which is equivalent to X and Y being stochastically independent.

This means that the mutual information $I(X, Y) = H(X) - H(X \mid Y)$ is nonnegative.

d) It holds

\[
H(X, Y) = - \sum_{i,j} p_{i,j} \log(p_{i,j})
= - \sum_{i,j} p_{i,j} [\log(p_{i,j}) - \log(p_i) + \log(p_i)]
= - \sum_{i,j} p_{i,j} \log \left(\frac{p_{i,j}}{p_i} \right) - \sum_i \sum_j p_{i,j} \log(p_i)
= H(Y \mid X) + H(X).
\]

e) It holds

\[
H(X, Y) \overset{(d)}{=} H(X) + H(Y \mid X) \overset{(c)}{\leq} H(X) + H(Y)
\]

with equality as in (c) iff X and Y are stochastically independent.
Solution of Problem 2

Show for any function \(f : X(\Omega) \times Y(\Omega) \to \mathbb{R} \), that \(H(X,Y, f(X,Y)) = H(X,Y) \).

By definition, we have:

\[
H(X,Y, Z = f(X,Y)) \overset{\text{Def.}}{=} \sum_{X,Y,Z} P(X = x, Y = y, Z = z) \log (P(X = x, Y = y, Z = z))
\]

With

\[
P(X = x, Y = y, Z = z) = \begin{cases}
P(X = x, Y = y), & \text{if } Z = f(X,Y) \\
0, & \text{if } Z \neq f(X,Y)
\end{cases}
\]

it follows that

\[
H(X,Y, Z = f(X,Y)) = \sum_{X,Y} P(X = x, Y = y) \log(P(X = x, Y = y)) = H(X,Y).
\]

Note: It holds \(0 \cdot \log 0 = 0 \).

Solution of Problem 3

Recall:

\[
\begin{align*}
|\mathcal{M}_+| & := \{|M \in \mathcal{M}_+| P(\hat{M} = M > 0)\} \\
|\mathcal{K}_+| & := \{|K \in \mathcal{K}_+| P(\hat{K} = K > 0)\} \\
|\mathcal{C}_+| & := \{|C \in \mathcal{C}_+| P(\hat{C} = C > 0)\}
\end{align*}
\]

With Lemma 4.12 a):

\[
|\mathcal{M}_+| \leq |\mathcal{C}_+| \leq |\mathcal{C}| = |\mathcal{M}| = |\mathcal{M}_+| \implies |\mathcal{C}_+| = |\mathcal{C}| \implies \mathcal{C}_+ = \mathcal{C} \implies P(\hat{C} = C) > 0 \ \forall C \in \mathcal{C}
\]

Let \(M \in \mathcal{M}, C \in \mathcal{C} \)

\[
0 < P(\hat{C} = C) = P(\hat{C} = C| \hat{M} = M) = P(e(\hat{M}, \hat{K}) = C) \overset{\text{Kato, ind.}}{=} P(e(M, \hat{K}) = C) = \sum_{K \in \mathcal{K}, e(M,K) = c} P(\hat{K} = K) \neq 0 \implies \forall M \in \mathcal{M}, C \in \mathcal{C}, \exists K \in \mathcal{K} : e(M, K) = C
\]

Fix \(M : |\mathcal{C}_+| = |\mathcal{C}| = |\{e(M, K)|K \in \mathcal{K}_+ = K\}| \leq |\mathcal{K}| = |\mathcal{C}| \implies \text{It follows that } K \text{ is unique!}
\]

Let \(M \in \mathcal{M}, C \in \mathcal{C}, \implies P(\hat{C} = C) = P(\hat{K} = K(M,C)) \)

Because of perfect secrecy that is independent of \(M \).

Fix \(C_o \in \mathcal{C} \implies \{K(M, C_o)|M \in \mathcal{M}\} = \mathcal{K}, \text{due to the injectivity of } e(\cdot, K) \)

and the sets have the same order

\[
\implies P(\hat{C} = C) = P(\hat{K} = K) \ \forall C \in \mathcal{C}, K \in \mathcal{K}
\]

\[
\implies P(\hat{K} = K) = \frac{1}{|\mathcal{K}|}
\]