Solution of Problem 1

a) \(p = 13 \) is a prime number, \(a = 5 \) is a quadratic residue mod \(p \).

1) \[v = b^2 - 4a = b^2 - 4 \cdot 5 = b^2 - 20. \]

 Choose: \(b = 5 \implies v = 25 - 20 = 5 \).
 With Euler’s criterion, compute:
 \[
 (v)_{11} = (5)_{11} = 5^{10/2} = 1. \]
 \(\implies v = 5 \) is a quadratic residue mod 11.

 Choose: \(b = 6 \implies v = 36 - 20 = 16 \equiv 5 \mod 11. \)
 \(\implies v = 5 \) is a quadratic residue mod 11.

 Choose: \(b = 7 \implies v = 49 - 20 = 29 \equiv 7 \mod 11. \)
 With Euler’s criterion, compute:
 \[
 (\frac{7}{11}) = 7^{10/2} \equiv 7^{5} \equiv 49 \cdot 49 \cdot 7 \equiv 5 \cdot 5 \cdot 7 \equiv -1 \mod 11. \]
 \(\implies v \) is a quadratic non-residue modulo 11.

2) Insert the values for \(a \) and \(b \) into the polynomial \(f(x) = x^2 - 7x + 5 \).

3) Compute \(r = x^{\frac{\phi(p)}{2}} \mod f(x) \):

 \[
 x^6 : (x^2 - 7x + 5) = x^4 + 7x^3 + 2x - 3
 - (x^6 - 7x^5 + 5x^4)
 + 7x^5 - 5x^4
 - (7x^5 - 5x^4 + 2x^3)
 - 2x^3
 - (-2x^3 + 3x^2 - 10x)
 - 3x^2 + 10x
 - (-3x^2 + 10x - 4)
 \]

 Hence, \(r = 4 \). Furthermore, and \(-r = -4 \equiv 7 \mod 11 \implies (r, -r) = (4, 7)\).
 // Validation \(r^2 = a \mod 11 \) is correct in both cases.

b) Both \(p, q \) satisfy the requirement for a Rabin cryptosystem: \(p, q \equiv 3 \mod 4 \).
 For \(c \mod p \equiv 225 \mod 11 \equiv 5 \), we already know the square roots \(x_{p,1} = 4, x_{p,2} = 7 \).
For $c \mod q \equiv 225 \mod 23 \equiv 18$, compute the square roots $x_{q,1}, x_{q,2}$ with the auxiliary parameter $k_q = \frac{q+1}{4} = 6$:

$$x_{q,1} = c^{k_q} = 18^6 = 18^3 \cdot 18^3 \equiv 13 \cdot 13 \equiv 8 \mod 23,$$
$$x_{q,2} = -8 \equiv 15 \mod 23.$$

Formulate $tq + sp = 1$:

$$23 = 2 \cdot 11 + 1$$
$$\Rightarrow 1 = 23 - 2 \cdot 11$$

We set $a = tq = 23$ and $b = sp = -22$. Compute all four possible solutions:

$$m_{11} = ax_{p,1} + bx_{q,1} = 23 \cdot 4 - 22 \cdot 8 = -84 \equiv 169 \mod 253 \Rightarrow (...1001)_2 \quad \cdot$$
$$m_{12} = ax_{p,1} + bx_{q,2} = 23 \cdot 4 - 22 \cdot 15 = -238 \equiv 15 \mod 253 \Rightarrow (...1111)_2 \quad \cdot$$
$$m_{21} = ax_{p,2} + bx_{q,1} = 23 \cdot 7 - 22 \cdot 8 = -15 \equiv 238 \mod 253 \Rightarrow (...1110)_2 \quad \cdot$$
$$m_{22} = ax_{p,2} + bx_{q,2} = 23 \cdot 7 - 22 \cdot 15 = -169 \equiv 84 \mod 253 \Rightarrow (...0100)_2 \quad \checkmark$$

The solution is $m = m_{21} = 84$ since it ends on 0100 in the binary representation.

// Checking all solutions yields $c = 225$.

c) Since $c = 225$, one is enabled to compute two square roots in the reals, $m = \pm 15$. If naive Nelson chooses 1111, the result $m = 15$ is obvious, without knowing the factors in $n = pq$.
Solution of Problem 2
Decipher $m = \sqrt{c} \mod n$ with $c = 1935$.

- Check $p, q \equiv 3 \mod 4 \checkmark$

- Compute the square roots of c modulo p and c modulo q.
 \[
 k_p = \frac{p + 1}{4} = 17, \quad k_q = \frac{q + 1}{4} = 18,
 \]
 \[
 x_{p,1} = c^{k_p} \equiv 1935^{17} \equiv 59^{17} \equiv 40 \mod 67,
 \]
 \[
 x_{p,2} = -x_{p,1} \equiv 27 \mod 67,
 \]
 \[
 x_{q,1} = c^{k_q} \equiv 1935^{18} \equiv 18^{18} \equiv 36 \mod 71,
 \]
 \[
 x_{q,2} = -x_{q,1} \equiv 35 \mod 71.
 \]

- Compute the resulting square root modulo n. $m_{i,j} = ax_{p,i} + bx_{q,j}$ solves $m_{i,j}^2 \equiv c \mod n$ for $i, j \in \{1, 2\}$. We substitute $a = tq$ and $b = sp$. Then $tq + sp = 1$ yields
 \[
 1 = 17 \cdot 71 + (-18) \cdot 67 = tq + sp \text{ from the Extended Euclidean Algorithm.}
 \]
 \[
 \Rightarrow a \equiv tq \equiv 17 \cdot 71 \equiv 1207 \mod n
 \]
 \[
 \Rightarrow b \equiv -sp \equiv -18 \cdot 67 \equiv -1206 \mod n.
 \]

The four possible solutions for the square root of ciphertext c modulo n are:

- $m_{1,1} \equiv ax_{p,1} + bx_{q,1} \equiv 107 \mod n \Rightarrow 0000001101011$,
- $m_{1,2} \equiv ax_{p,1} + bx_{q,2} \equiv 1313 \mod n \Rightarrow 0010100100001$,
- $m_{2,1} \equiv ax_{p,2} + bx_{q,1} \equiv 3444 \mod n \Rightarrow 0110101110100$,
- $m_{2,2} \equiv ax_{p,2} + bx_{q,2} \equiv 4650 \mod n \Rightarrow 1001000101010$.

The correct solution is m_1, by the agreement given in the exercise.
Solution of Problem 3

a) Given \(x \equiv -x \mod p \), prove that \(x \equiv 0 \mod p \).

Proof. The inverse of \(2 \) modulo \(p \) exists. Then,

\[
-x \equiv x \mod p \\
\iff 0 \equiv 2x \mod p \\
\iff 0 \equiv x \mod p.
\]

\[\square\]

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses \(p = q \).

i) Alice calculates \(n = p^2 \) and sends \(n \) to Bob.

ii) Bob calculates \(c \equiv x^2 \mod n \) and sends \(c \) to Alice. With high probability \(p \nmid x \iff x \not\equiv 0 \mod p \) (therefore, Bob almost always loses).

iii) The only two solutions \(\pm x \) are calculated by Alice (see below) and sent to Bob. Bob cannot factor \(n \), as

\[
\gcd(x - (\pm x), n) = \begin{cases}
\gcd(0, n) = n \\
\gcd(2x, n) = \gcd(2x, p^2) = 1
\end{cases}.
\]

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be accused of cheating. Bob can factor \(n \) by calculating \(p = \sqrt{n} \) as a real number and win the game.

Note: The two solutions \(\pm x \) to \(x^2 \equiv c \mod p^2 \) can be calculated as follows.

Let \(p \) be an odd prime and \(x, y \not\equiv 0 \mod p \). If \(x^2 \equiv y^2 \mod p^2 \), then \(x^2 \equiv y^2 \mod p \), so \(x \equiv \pm y \mod p \).

Let \(x \equiv y \mod p \). Then

\[
x = y + \alpha p.
\]

By squaring we get

\[
x^2 = y^2 + 2\alpha py + (\alpha p)^2 \\
\Rightarrow x^2 \equiv y^2 + 2\alpha py \mod p^2.
\]

Since \(x^2 \equiv y^2 \mod p^2 \), we obtain

\[
0 = 2\alpha py \mod p^2.
\]

Divide by \(p \) to get

\[
0 = 2\alpha y \mod p.
\]

Since \(p \) is odd and \(p \nmid y \), we must have \(p \nmid \alpha \). Therefore, \(x = y + \alpha p \equiv y \mod p^2 \). The case \(x \equiv -y \mod p \) is similar.
In other words, if \(x^2 \equiv y^2 \mod p^2 \), not only \(x \equiv \pm y \mod p \), but also \(x \equiv \pm y \mod p^2 \). At this point, we have shown that only two solutions exist.

Now, we show how to find \(\pm x \), where \(x^2 \equiv c \mod p^2 \). As we can find square roots modulo a prime \(p \), we have \(x = b \) solves \(x^2 \equiv c \mod p \). We want \(x^2 \equiv c \mod p^2 \). Square \(x = b + ap \) to get

\[
\begin{align*}
 b^2 + 2bap + (ap)^2 &\equiv b^2 + 2bap \equiv c \mod p \\
 \Rightarrow b^2 &\equiv c \mod p.
\end{align*}
\]

Since \(b^2 \equiv c \mod p \) the number \(c - b^2 \) is a multiple of \(p \), so we can divide by \(p \) and get

\[
2ab \equiv \frac{c - b^2}{p} \mod p.
\]

Multiplying by the multiplicative inverse modulo \(p \) of 2 and \(b \), we obtain:

\[
a \equiv \frac{c - b^2}{p} \cdot 2^{-1} \cdot b^{-1} \mod p.
\]

Therefore, we have \(x = b + ap \).

This procedure can be continued to get solutions modulo higher powers of \(p \). It is the numeric-theoretic version of Newton’s method for numerically solving equations, and is usually referred to as Hensel’s Lemma.

Example: \(p = 7, p^2 = 49, c = 37 \). Then

\[
\begin{align*}
 b &= c^{\frac{p+1}{2}} = 37^{\frac{7+1}{2}} = 37^2 \equiv 4 \mod p, \\
 b^{-1} &\equiv 2 \mod p, \ 2^{-1} \equiv 4 \mod p, \\
 a &= \frac{c - b^2}{p} \cdot 2^{-1} \cdot b^{-1} = \frac{37 - 4^2}{7} \cdot 4 \cdot 2 \equiv 3 \mod p \Rightarrow x = b + ap = 4 + 3 \cdot 7 = 25
\end{align*}
\]

Check: \(x^2 = 25^2 \equiv 37 \equiv c \mod p^2 \).