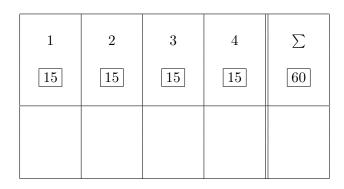


Univ.-Prof. Dr. rer. nat. Rudolf Mathar



Written Examination

Cryptography

Tuesday, August 29, 2017, 01:30 p.m.

Name: _

_____ Matr.-No.: __

Field of study: ____

Please pay attention to the following:

- 1) The exam consists of **4 problems**. Please check the completeness of your copy. **Only** written solutions on these sheets will be considered. Removing the staples is **not** allowed.
- 2) The exam is passed with at least **30 points**.
- **3)** You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
- 4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
- 5) The results will be published on Wednesday, the 06.09.17, 16:00h, on the homepage of the institute.

The corrected exams can be inspected on Friday, 08.09.17, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Acknowledged:

(Signature)

Problem 1. (15 points)

Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem with the message space $\mathcal{M} = \{1, 2\}$, the key space $\mathcal{K} = \{k_1, k_2, k_3\}$ and the ciphertext space $\mathcal{C} = \{1, 2, 3, 4\}$. The following table contains the encryption rules:

Let the message \hat{M} and the key \hat{K} be stochastically independent random variables defined over the space \mathcal{M} and \mathcal{K} , respectively. \hat{C} is the random variable corresponding to the ciphertext.

- a) Suppose that $P(\hat{M} = 1) = p$ and \hat{K} is uniformly distributed over the key space. Determine $H(\hat{M}), H(\hat{K}), H(\hat{C})$.
- **b)** Find $H(\hat{M} \mid \hat{C})$ and the key equivocation $H(\hat{K} \mid \hat{C})$. **Hint:** $H(\hat{M} \mid \hat{C}) = H(\hat{C} \mid \hat{M}) + H(\hat{M}) - H(\hat{C})$
- c) Show that this cryptosystem does not have perfect secrecy. Is there a probability distribution over the key space so that the perfect secrecy is achieved?

Problem 2. (15 points)

Let n = pq, $p \neq q$ distinct odd primes.

a) Suppose that for some $r \in \mathbb{Z}_n^*$ the quadratic equation $x^2 \equiv r^2 \mod n$ has a non-trivial solution, i.e., $a \neq \pm r \mod n$. Show that in this case

$$gcd(a+r,n) \in \{p,q\}.$$

Consider an RSA cryptosystem with two prime numbers p = 13 and q = 19. The public key is given by $(n = 13 \times 19 = 247, e = 59)$.

- **b)** Determine the decryption exponent d.
- c) Decrypt the ciphertext c = 10 using the square-and-multiply algorithm.

Consider an RSA cryptosystem with the public key (n, e) with n = pq and $p \neq q$ distinct primes.

- d) Show that if the plaintext m is chosen such that gcd(n,m) = p or q, the secret key d can be computed only from the ciphertext c and the public key (n, e).
- e) Consider an RSA cryptosystem with the public key (n = 143, e = 7). For the ciphertext c = 22, compute the secret key d.

Problem 3. (15 points)

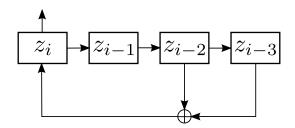
Consider the following Linear Feedback Shift Register (LFSR) based stream cipher. Messages are bit sequences of arbitrary length, i.e., character sequences over the alphabet $\mathbb{F}_2 = \{0, 1\}$. Let the message be $m = m_1 m_2 \dots m_l$. Keys are also bit sequences $k = k_1 k_2 \dots k_n$ of fixed length n < l. Now, a key stream $z = z_1 z_2 \dots z_l$ is recursively generated depending on the key as follows:

$$z_i = k_i, \quad 1 \le i \le n,$$

 $z_i = \sum_{j=1}^n s_j z_{i-j} \pmod{2}, \quad n < i \le l.$

The bits s_1, \ldots, s_n are fixed and given in advance. We encrypt $c_i := m_i \oplus z_i$ for $1 \le i \le l$.

- a) How does decryption work for this cryptosystem? What happens if $k = 00 \dots 0$ is chosen as the key?
- b) Encrypt the message m = 1011000101001010100 with n = 4, $s_2 = s_3 = 0$, $s_1 = s_4 = 1$ using the key k = 0110.
- c) How long is the period¹ of the key stream z in b)? And how many zeros and ones occur in this key stream z within one period? What is the maximal period p_{max} of an LFSR with a key k of length n?



d) Derive the feedback polynomial $f(x) = 1 + \sum_{i=1}^{n} s_i x^i$ of the LFSR given in the figure above. It is known that the LFSR has the maximal period p_{max} if the feedback polynomial of z_i is primitive² in \mathbb{F}_2 . Show that the above LFSR fulfils this requirement.

¹The period p of an LFSR is defined as $p = \min\{k \in \mathbb{N} | \exists i_0 \in \mathbb{N}, i \in \mathbb{N}, \forall i \ge i_0 : z_{i_0+k} = z_i\}.$

²A polynomial f(x) of degree n is called *primitive* if and only if the smallest $q \in \mathbb{N}$ for which f(x) divides the polynomial $x^q + 1$ is $q = 2^n - 1$.

Problem 4. (15 points)

Consider a modified Rabin cryptosystem in which the encryption function e_K is defined as $e_K(m) = m \cdot (m+B) \mod n$, where m is the message. $B \in \mathbb{Z}_n$ and n = pq (for primes $p \neq q$) constitute the public key. Supposing that p = 199, q = 211, and B = 1357, perform the following computations.

- **a)** Compute the encryption $y = e_K(32767)$.
- **b**) Determine the four possible decryptions of the ciphertext y.

Alice and Bob use Shamir's no-key protocol to exchange a secret message. They agree to use the prime p = 31883 for their communication. Alice wants to send the message m to Bob. She chooses the random number a = 8647 while Bob chooses b = 10931. It is known that Bob receives the first exchanged value $c_1 = 26843$.

c) Calculate the remaining values c_2 , c_3 , and decipher the message m for Bob. Hint: You may use the following values :

 $27084^{12046} \equiv 24532 \pmod{31883}, \quad 27084^{30315} \equiv 13230 \pmod{31883}, \\ 26843^{8647} \equiv 14913 \pmod{31883}, \quad 14913^{10931} \equiv 868 \pmod{31883}.$

Additional sheet

Problem:

Additional sheet

Problem:

Additional sheet

Problem: